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Regression

Linear regression model:
y = XTw + ϵ, x ∈ [0, 1]2×n,

Ordinary Least Squares(OLS):
ŵ = (XXT )−1XY,

The most commonly used method: simple, efficient.
Robustness issue: What if the outliers exists? Only one
outlier can destroy the results.
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Figure 1:OLS fittings destroyed by the outliers

Research Objectives

Proposing new methods for solving regression problems:
•Robust to outliers.
• Incorporating prior knowledge.

Robust Regression

Model assumption:
y = XTw∗ + b∗ + ϵ, ϵ ∼ N (0, σ2In) (1)

b∗: a k-sparse vector; non-zero elements indicate outliers.
The robust least-squares regression(RLSR) solves:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xT
i w)2 (2)

Goal: recover the uncorrupted point set S and the regression
coefficient w∗ simultaneously. NP hard!
A natural statistical interpretation: maximum likelihood estima-
tion(MLE):

(ŵ, Ŝ) = arg max
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

log ℓ(w | yi, xi, σ2)

Incorporating Prior information, Bayesian RLSR: given prior
pw(w); Posterior:

p(yS, w | XS) = pw(w) ∏
i∈S

ℓ(yi | w, xi, σ2) (3)
Maximizing the log-posterior:

(ŵ, Ŝ) = arg max
w∈Rp,|S|=n−k

log pw(w) + ∑
i∈S

[log ℓ(yi | w, xi, σ2)] (4)

Two types of attacks are considered:
OAA (oblivious adversarial attack): The outliers are indepen-
dent to the data.
AAA (adaptive adversarial attack): A more severe attack in
which outliers are correlated to data.
Difficulties: Algorithms, Reducing bias caused by prior.

Algorithm: TRIP

Hard Thresholding approach to Robust regression with sImple Prior.

•An elegant posterior:
(ŵ, Ŝ) = arg min

w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi−xT
i w)2+(w−w0)TM(w−w0),

given Gaussian prior pw(w) = N (w0, σ2M−1).
•Hard thresholding [1] operator:b̂ = HTk(b), where

b̂i = bi if δ−1
r (i) ≤ k and 0 otherwise.

• Intuition: if only k outliers, then the k elements that have
the largest residues are labeled as outliers.
•TRIP Algorithm:

b0← 0, t← 0,
PMX ← XT (XXT + M)−1X ,
PMM ← XT (XXT + M)−1M
while ∥bt − bt−1∥2 > ϵ do
bt+1← HTk(PMXbt + (I − PMX)y− PMMw0)
t← t + 1;

end while
return ŵ← (XXT )−1X(y− bt)

Reducing Bias :BRHT

Robust Bayesian Reweighting regression via Hard Thresholding.

•Prior are typically imprecise.
•To reduce its influence, we introduce a localization parameter

r that reflects the influence of each sample [4]:
p(y, w, r|X) ∝ pw(w)pr(r) n∏

i=1
ℓ(w|yi, xi, σ2)ri

• Intuition: ri associated with "good" sample (small residuals)
tends to be large, i.e., contribute more to posterior density.
•BRHT Algorithm:

b0← 0, t← 0,
while ∥bt − bt−1∥2 > ϵ do
wt← VBEM(X, y− bt, pr(r), pw(w))
bt+1← HTk(y−XTwt)
t← t + 1;

end while
return ŵ← (XXT )−1X(y− bt)

VBEM: variational Bayesian expectation maximization. Estimating w with
existence of latent variables.

Our Contributions

•We propose new methods that incorporate prior knowledge into robust regression to increase the breakdown point.
•We derive the theoretical properties of the proposed algorithms.
•The simulation results show that our methods significantly outperform alternative methods under AAAs. Moreover, BRHT

algorithm is also competitive against OAAs.

Theoretical Convergence

Theorem (Convergence of TRIP)

For break point ∥b∗∥0 ≤ k ·n. Under mild conditions, for k >
k∗, it is guaranteed with a probability of at least 1−δ that, for
any ε, δ > 0, ∥bT0 − b∗∥2 ≤ ε + O(O(σ

√√√√√(k + k∗) log n
δ(k+k∗))) +

O(
√

Λk+k∗λmax(M)
λmin(XXT +M) )∥w

∗−w0∥2 after T0 = O(log(∥b
∗∥2
ε )) iterations

of TRIP.

Theorem (Convergence of BRHT)

For break point ∥b∗∥0 ≤ k · n. Under mild conditions, for
k > k∗, it is guaranteed with a probability of at least 1−δ that,
for any ε, δ > 0, ∥bT0 − b∗∥2 ≤ ε + O(σ

√√√√√(k + k∗) log n
δ(k+k∗)) +

O(
√

Λk+k∗λmax(M)
λmin(XXT +M) )γ∥w

∗ − w0∥2 after T0 = O(log(γ∥b∗∥2
ε )) itera-

tions of BRHT.

Simulation Studies

Benchmarks: CRR [1]; Reweighted robust Bayesian regression
(RRBR) [4]; Rob-ULA [2].
•TRIP and BRHT are more robust under AAAs.
•BRHT Performs the best in all experiments.

Figure 2:Recovery of parameters

•BRHT is more accurate and behaves significantly better
under AAAs, while TRIP stalls during the iterative process.

Figure 3:(a),(b), Convergence diagnostic. (c),(d), Impact of prior pr(r) and
pw(w).

Conceptual Illustration

Recall the toy example. TRIP and BRHT can accurately detect
the outliers and estimate coefficients.
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Figure 4:TRIP and BRHT fittings are perfect!

Conclusion

Two algorithms are proposed for robust regression.
•TRIP: By incorporating the prior knowledge, we propose

robust regression via hard thresholding. The recovery of
coefficients is significantly improved.
•BRHT: By employing Bayesian reweighting, reduce the

estimation bias caused by prior bias.
Both algorithms have strong theoretical guarantees that the al-
gorithms converge linearly under a mild condition.
Future research:
•Extend to situations where both y and X are corrupted.
• Further reduces the effect of a prior on the estimation.
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