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Introduction

Partial differential equations (PDEs) are widely employed to describe the physical
and engineering phenomenon.

Some parameters, which are determined by material properties, engineering
properties, etc., are very important for prediction of PDE.

In real world applications, directly measuring of these parameters are sometimes
impossible.

Estimating these parameters from physical experiment data are important task,
known as model calibration, inverse problems, etc.

We propose a new method for PDE parameter inference, called PDE-Informed
Gaussian Process Inference (PIGPI).
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Motivation Example

As a motivation example, we consider the long-range infrared light detection and
ranging (LIDAR) equation.

The received signal over time t and range z can be predicted by the PDE solution:

∂u(t, s)

∂t
− θD

∂2u(t, s)

∂s2
− θS

∂u(t, s)

∂s
= θAu(t, s), 0 ≤ t ≤ 20, 0 ≤ s ≤ 40,

with specified boundary and initial conditions.

The task is to estimate the parameters θD, θS , θA from the observation data
y(xi) = u(xi) + εi, i = 1, . . . , n, where xi = (ti, si), εi ∼ N(0, σ2e) is random error.

Let τ = {xi, i = 1, . . . , n}, y(τ ) = (y(xi), i = 1, . . . , n).
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Problem Formulation

In general, let’s start with a semi-linear partial differential equation (PDE):

Lθ
xu(x) = f(x, u(x),θ),

where x = (x1, . . . , xp), Lθ
xu(x) denotes a linear differential operator on u ∈ F (some

Hilbert space) of order a.
In the motivation example,

Lθ
xu(x) =

∂u(x)
∂t − θD

∂2u(x)
∂s2

− θS
∂u(x)
∂s , where x = (t, s).

f(x, u(x),θ) = θAu(x).
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Problem Formulation

In general, we can assume that the PDE operator has the form

Lθ
xu(x) =

∑
αi∈A

ci(θ,x)
∂|αi|u(x)

∂αi1x1 · · · ∂αipxp
,

where αi = (αi1, . . . , αip), αij = 0, 1, 2, . . . , and |αi| =
∑p

j=1 αij > 0. A = {αi, i = 1, ..., l}.
The order of Lθ

x is defined by a = maxi ∥αi∥1.
In the motivation example,

Lθ
xu(x) =

∂u(x)
∂t − θD

∂2u(x)
∂s2

− θS
∂u(x)
∂s .

c1 = 1, c2 = −θD, c3 = −θS , α1 = (1, 0),α2 = (0, 2),α3 = (0, 1).

a = 2, a second order PDE.
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Basic Idea of PIGPI

The task is to estimate the parameters θ from the observation data
y(xi) = u(xi) + εi, i = 1, . . . , nτ . Let τ = {xi, i = 1, . . . , nτ}.
We assign a Gaussian process (GP) prior on u(x) denoted by U(x) ∼ GP(µ, σ2K(·, ·)).
To incorporate PDE constraints into GP prior, define a random variable W
quantifying the difference between GP U(x) and the PDE structure with given θ, i.e.,

W = sup
x∈Ω

∥Lθ
xU(x)− f(x, U(x),θ)∥.

W ≡ 0 if and only if U is the solution of PDE with specified parameter θ.
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Basic Idea of PIGPI

However, in reality W is not computable. We approximate W by finite discretization
on the set I = {x1, . . . ,xnI} ⊂ Ω such that τ ⊂ I ⊂ Ω and similarly define WI as

WI = sup
x∈I

∥Lθ
xU(x)− f(x, U(x),θ)∥.

When I is dense, WI can well approximate W .

Will discuss the choice of I later.
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Basic Idea of PIGPI

An important property for Gaussian process:

If U(x) ∼ GP(µ, σ2K(·, ·));
Given enough order of differentiable to K (2a order derivative exists).

Then Lθ
xU(x) ∼ GP(Lθ

xµ(x),LxLx′K(x,x′)).

Recall
WI = sup

x∈I
∥Lθ

xU(x)− f(x, U(x),θ)∥.

WI = 0 → Lθ
xU(x) = f(x, U(x),θ);

WI = 0|(U(I) = u(I)) → Lθ
xU(x) = f(x, u(x),θ).
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Basic Idea of PIGPI

By treating WI as an approximation of W and assigning a noniformative prior for θ,
Jeffrey’s prior on σ2e , the posterior is immediately obtained

pσ2
e ,Θ,U(I)|WI ,Y (τ )

(
σ2e ,θ, u(I)|WI = 0, Y (τ ) = y(τ )

)
∝P

(
σ2e ,Θ = θ, U(I) = u(I),WI = 0, Y (τ ) = y(τ )

)
=π(σ2e)× πΘ (θ)× P (U(I) = u(I)|Θ = θ)

× P
(
Y (τ ) = y(τ )|σ2e , U(I) = u(I),Θ = θ

)
× P (WI = 0|Y (τ ) = y(τ ), U(I) = u(I),Θ = θ) .

=
1

σ2e
πΘ (θ) exp

{
− 1

2

[
nI log(2π) + log(|C|) + ∥u(I)− µ(I)∥C−1

+ n log(2π) + n log(σ2e) + ∥u(τ )− y(τ )∥σ−2
e

+ nI log(2π) + log |K|+ ∥f(I, u(I),θ)− Lxµ(I)−m{u(I)− µ(I)}∥K−1

]}
,

Posterior inference for both θ and u(I) can be done by sampling from/optimizing this
(unnormalized) posterior density.
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Basic Idea of PIGPI

where 
C = K(I, I)

m = LK(I, I)K(I, I)−1

K = LKL(I, I)− LK(I, I)K(I, I)−1KL(I, I)
,

When L depends on θ, m and K need to be updated when θ changes.

Till now, we assume the PDE operator is linear. Although covers a group of
nonlinear-PDE cases, parameter inference from complex nonlinear PDEs are very
important and challenging.

To solve these problems, we propose a novel method that

can decouple the dependence between parameter θ and covariance matrix K . Thus K is
fixed once I is given, i.e., no need to update when evaluating posterior density.
can deal with a wide range of nonlinear PDEs.
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Handling Non-linear and Parameter-dependent Operators

To demonstrate, we consider a nonlinear PDE,

∂u

∂t
(x) = θ1u(x)

∂u

∂s
(x)− θ2

∂2u

∂s2
(x).

This PDE is called Burger’s equation, the PDE operator is Lu = ∂u
∂t − θ1u

∂u
∂s + θ2

∂2u
∂s2

. It is

Nonlinear: u(x)∂u∂s (x) term;

Parameter-operator dependent: −θ1u∂u
∂s + θ2

∂2u
∂s2

term.
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Handling Non-linear and Parameter-dependent Operators

Recall the Burger’s equation,

∂u

∂t
(x) = θ1u(x)

∂u

∂s
(x)− θ2

∂2u

∂s2
(x).

First, we define an equivalent PDE system,

∂u1
∂s

(x) = u2(x),

∂u2
∂s

(x) = u3(x),

∂u1
∂t

(x) = θ1u1(x)u2(x)− θ2u3(x),

This system of PDEs is called augmented PDE.

The augmented PDE system has a linear, parameter independent operator.

PDE is still nonlinear.
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Handling Non-linear and Parameter-dependent Operators

In general, we consider the nonlinear PDE of the form

Lxu(x) = f(x, u,θ)
rewrite⇐⇒ ∇α1u = L1(x,θ, u,∇α2u, . . . ,∇αlu) + f(x, u,θ) (1)

where L1 is a nonlinear function of (x,θ, u,∇α2u, . . . ,∇αlu), which is the remaining part
of Lx. L1 may contains parameter dependent components and nonlinear components.
Then one method for defining augmented PDE is to rewrite (1) as

∇α1u = L1(x,θ, u︸︷︷︸
u1

,∇α2u︸ ︷︷ ︸
u2

, . . . ,∇αlu︸ ︷︷ ︸
ul

) + f(x, u,θ),

such that
∇α2u1(x) = u2(x),

...

∇αlu1(x) = ul(x),

∇α1u1(x) = f(x, u1(x),θ) + L1(x,θ, u1, u2, . . . , ul).

(2)
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Handling Non-linear and Parameter-dependent Operators

Several properties are helpful for constructing PIGPI method based on augmented PDE:

It can be shown these two PDE (systems) are equivalent:

Classical solution of original PDE can generalize to a classical solution of augmented
PDE;
Classical solution of augmented PDE is also a classical solution of original PDE;

The augmented PDE contains no parameters in left hand side, i.e., the PDE operator
is independent to parameters;

PDE operator for augmented PDE is linear operator.

After augmentation, the idea is natural to apply the proposed PIGPI to the augmented
multi-variate PDE.
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Discussion - Non-uniqueness of Augmentation
Lowest degree of derivative (LDD) principal: It is easy to see that the
augmentation is not unique. As an example, consider equation ut − θ1uux − θ2uxx = 0, the
augmentation can be

ut(x) = θ1u(x)u1(x)− θ2u2(x),

ux(x) = u1(x),

uxx(x) = u2(x),

or

ut(x) = θ1u(x)u1(x)− θ2u2(x),

ux(x) = u1(x),

u1x(x) = u2(x).

While in this paper, we recommend to use the second augmentation. The main reasons
are (a). the second augmented PDE system is a 1-order PDE while the first one is 2-order
PDE. We prefer to use a lower order PDE. (b). the second augmented PDE system
produce simpler covariance matrix K.
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Construction of I

For many PDE based problems, Ω ⊂ Rp, where p = 2, 3, or 4. It is vital to chose proper
discretization I:

o I should be dense in Ω, i.e., ∀x ∈ Ω, distance between x and I should be as small as
possible. I should be space filling.

o From a computational point of view, |I| should be as small as possible.

In practical applications, it is a common situation that the observation data are collected
ahead of data analysis. Thus, we assume that τ is known and fixed. Method for
constructing I:

0 Construct a (large) candidate point set D of size N (N >> nI);

1 Start with I = τ .

2 For i = nτ + 1, . . . , nI , repeat

2.1 Find xi = argmaxx∈Dd(x, I);
2.2 I = I ∪ xi.

3 Output I.
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Handling Boundary/Initial Conditions

In particular, we divide the IBCs into two categories, i.e., Dirichlet IBCs and
Non-Dirichlet IBCs. Dirichlet IBCs are given by the known value of PDE solution on the
specific boundary regions, i.e.,

u(x) = b1(x),x ∈ Γ1. (3)

In many applications, the initial conditions have the same form with Dirichlet boundary
condition, i.e., known value of PDE solution at time t = 0. The Non-Dirichlet boundary
condition can be represented by an differential operator

Bx,θu(x) = b2(x, u(x),θ),x ∈ Γ2, (4)

where B is a differential operator with order b > 0, which has the similar form with L that
we defined in previous sections.
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Handling Boundary/Initial Conditions

For non-Dirichlet Boundary conditions, we define the comprehensive operator

Lx,θu(x) =

{
Lx,θu(x), x ∈ Ω\Γ2

Bx,θu(x), x ∈ Γ2
.

Similarly, define the comprehensive source term

f(x, u(x),θ) =

{
f(x, u(x),θ), x ∈ Ω\Γ2

b2(x, u(x),θ), x ∈ Γ2
.

For non-Dirichlet boundary condition, it is natural to incorporate the boundary
information by including several proper chosen boundary points and replacing L and f
with their comprehensive forms.
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Handling Boundary/Initial Conditions

Let I1 ⊂ Γ1 and I2 ⊂ Γ2 denote the discretization subset of Γ1 and Γ2, respectively. For
non-Dirichlet boundary condition, it is natural to incorporate the boundary information
by replacing I with I ∪ I2 and replacing L and f with their comprehensive forms. For
Dirichlet boundary condition, we assume the value of PDE solution is known a priori on
Γ1 ahead of inference.
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Handling Boundary/Initial Conditions
The posterior now is modified as follows,

pσ2
e ,Θ,U(I)|WI ,Y (τ )=y(τ ),U(I1)=b1(I1))

(
σ2
e ,θ, u(I)|WI = 0, Y (τ ) = y(τ ), U(I1) = b1(I1)

)
∝P

(
σ2
e ,Θ = θ, U(I) = u(I),WI = 0, Y (τ ) = y(τ ), U(I1) = b1(I1)

)
=π(σ2

e)× πΘ (θ)× P (U(I) = u(I))

× P (Y (τ ) = y(τ )|U(I) = u(I), πΘ)

× P (U(I1) = b1(I1)|U(I) = u(I))

× P (WI = 0|U(I1) = b1(I1), U(I) = u(I),Θ = θ) .

∝ 1

σ2
e

× πΘ(θ) exp
{
− 1

2

[
nI log(2π) + log(|C|) + ∥u(I)− µ(I)∥C−1

+ n log(2π) + n log(σ2
e) + ∥y(τ )− u(τ )∥σ−2

e

+ nI1 log(2π) + log |Cb|+
∥∥b1(I1)− µ(I1)−K(I1, I)K(I, I)−1(u(I)− µ(I1))

∥∥
C−1

b

+ nI log(2π) + log |Kb|+ ∥f(I, u(I),θ)− Lxµ(I)−mb{u(I ∪ I1))− µ(I ∪ I1))}∥K−1
b

]}
,

where Cb = K(I1, I1)−K(I1, I)K(I, I)−1K(I, I1),

Kb = LKL(I, I)− LK(I, I ∪ I1)K(I ∪ I1, I ∪ I1)
−1KL(I ∪ I1, I) and

mb = LK(I, I ∪ I1))K(I ∪ I1), I ∪ I1))
−1.
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Dimensional Reduction for U(I)

The parameter space is of dimension lnI + d, l is the number of PDE components.
Thus, when nI is large, optimizing or sampling from posterior are challenging tasks.

The Karhunen Loeve (KL) expansion to the GP U(x) is given by

U(x) =

∞∑
i=1

Zi

√
λiψi(x),

√
λi are eigenvectors of kernel function of GP in decreasing order, we can choose an

M ∈ N such that λi for i > M are negligible, then the GP U(x) is approximated by

U(x) ≈
M∑
i=1

Zi

√
λiψi(x).

M is chosen such that
∑M

i=1 λi/
∑nI

i=1 λi ≥ 99.99%.

U(x) is parametrized by (Z1, Z2, . . . , ZM ).
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Prior Tempering - Balancing Contribution of Prior and Likelihood
When I, i.e., the discretization set, is a large set while τ is relatively small, i.e., the
observation is sparse.

When I1, i.e., the discretization set for boundary region, is a large set while τ is
relatively small.

The contribution of prior of U(x) becomes too large. To mitigate this imbalance, we
provide an idea of tempering. In particular

We replace log(|C|) + ∥u(I)− µ(I)∥C−1 with log(|C|)/β + ∥u(I)− µ(I)∥C−1 /β,
where β = n/nI .

We replace ∥m(I1)− y(I1)∥C−1
b

by 1
n1

∥m(I1)− y(I1)∥C−1
b

.

In summary, the posterior is modified to

p
(β)
σ2
e ,Θ,U(I)|WI ,Y (τ ),U(I1)

(
σ2e ,θ, u(I)|WI = 0, Y (τ ) = y(τ ), U(I1) = b(I1)

)
∝πΘ (θ)× [P (U(I) = u(I))× P (WI = 0|U(I1) = b(I1), U(I) = u(I),Θ = θ)]

1
β

× P (U(I1) = b(I1)|U(I) = u(I))
1
n1

× π(σ2e)× P (Y (τ ) = y(τ )|U(I) = u(I),Θ)
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Hamiltonian Monte Carlo

We apply the Hamiltonian Monte Carlo(HMC) algorithm to draw random sample
from the posterior distribution.

Compared to using a Gaussian random walk proposal distribution in the
Metropolis–Hastings algorithm, Hamiltonian Monte Carlo reduces the correlation
between successive sampled states by proposing moves to distant states which
maintain a high probability of acceptance.

Leapfrog method for HMC is adopted to draw proposal for parameters.
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Summary of PIGPI Procedure

Algorithm 1 Posterior Inference for PIGPI Procedure

1: Input data D = {(yi,xi), i = 1, . . . , nτ}, selecting I using method proposed in previous
slides.

2: Train Gaussian process model based on D, obtain the posterior density.
3: Optimize the posterior density to obtain MAP estimation of u(I), σ2e and θ.
4: Take MAP estimation obtained from Step 3 as a initial state. Draw posterior sample

for θ, σ2e and u(I) using HMC algorithm.
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Numerical Illustration - Preparation

Proposed methods

PIGPI

Benchmark methods

Two-Stage Method (TSM).

Automated PDE identification (API) method (Liu et. al 2021).

Methods (BM and PC) proposed by Xun et. al.(2013)
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal
of the American Statistical Association, 108(503), 1009-1020.

Liu, R., Bianco, M. J., & Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the Acoustical

Society of America, 150(4), 2364-2374.

Zhaohui Li (Georgia Tech) PIGPI February 7, 2023 26 / 39



Numerical Illustration - Preparation

Evaluation metrics

Bias, Root mean square error (RMSE) of MAP of θ (component-wise): Evaluate the
accuracy of parameter estimation.

Coverage rate of 95% credible intervals for θ (component-wise): Evaluate the
accuracy of uncertainty quantification.

RMSE of MAP of u(xI): Evaluate the ability of recovering PDE.

Computation time for MAP optimization: Evaluate the efficiency of alternative
methods.
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Example1-Contaminant Source Identification

Consider a dimensionless diffusion equation on a square domain s ∈ S = [0, 1]× [0, 1]
and time interval t ∈ [0, 1]

∂u

∂t
−∇2u =

c

2πσ2
exp

(
−|s− χ|

2σ2

)
.

The boundary and initial conditions are given by
u(s, t) = 0, s ∈ ∂S, t ∈ [0, 1], u(s, 0) = 0, s ∈ S, where u is the dissolved concentration
of contaminant, t is time, s is the location.

Observation: y(xi) = u(xi) + εi, i = 1, . . . , n, where xi = (ti, si), εi ∼ N(0, σe).

The purpose is to estimate the parameter θ = (c,X1,X2).

Zhaohui Li (Georgia Tech) PIGPI February 7, 2023 28 / 39



Example1-Contaminant Source Identification
By applying HMC, the posterior density and trace of posterior sample are shown in figure
1 and 2. Note that the corresponding true values for θ = (5, 0.25, 0.75) and σe = 0.001.

Figure 1: The density estimation of θ and σe.

Figure 2: The trace plot of posterior sample for θ and σe.
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Example1-Contaminant Source Identification
We compare the computational time of MAP optimization between using and not using
KL expansion.
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Figure 3: Comparison of computational time
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Example2-Long-Range Infrared Light Detection and Ranging

Recall the motivation example

∂u(t, s)

∂t
− θD

∂2u(t, s)

∂s2
− θS

∂u(t, s)

∂s
= θAu(t, s), t ∈ [0, 20], s ∈ [0, 40].

The boundary condition is given by u(t, 0) = 0 and initial condition is
u(0, s) = {1 + 0.1 ∗ (20− s)2}−1.

Observation: y(xi) = u(xi,θ0) + εi, i = 1, . . . , n, where εi ∼ N(0, σe). The true value
for θ0 is (1, 0.1, 0.1).

θD and θS are involved in the linear PDE operator.;

This example can be found in the JASA paper:
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter
estimation of partial differential equation models. Journal of the American Statistical
Association, 108(503), 1009-1020.
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Example2-Long-Range Infrared Light Detection and Ranging
PIGPI method can be applied but is possibly time consuming;
Compare the computational time of PIGPI and PIGPI + PDE augmentation;
Use Adam algorithm, 2500 iterations for each optimization.
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Figure 4: Comparison of computational time
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Example2-Long-Range Infrared Light Detection and Ranging

Comparing with methods proposed in JASA paper:
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter
estimation of partial differential equation models. Journal of the American Statistical
Association, 108(503), 1009-1020.

τ = {(i, j), i = 1, 2, . . . , 20, j = 1, 2, . . . , 40}. I = τ .

Two methods are proposed in this paper, Bayesian method (BM) and parameter
cascading method (PC).

We comapre with BM, PC and TSM.
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Example2-Long-Range Infrared Light Detection and Ranging

σe = 0.02 σe = 0.05

θD θA θS θD θA θS

Bias
×10−3

PIGPI -14.00 -0.20 -0.12 -27.35 -0.34 -0.29
BM -16.50 -0.40 -0.20 -35.60 1.00 0.60
PC -29.70 -0.10 -0.30 -55.90 -0.20 -0.50
TSM -105.33 -2.69 -1.28 -140.12 -4.05 -2.12

SD
×10−3

PIGPI 9.37 1.63 0.21 20.31 3.74 0.48
BM 9.10 1.60 0.20 22.20 3.80 0.50
PC 24.90 3.80 0.50 40.50 6.20 0.80
TSM 29.42 3.82 0.52 49.00 7.29 1.03

RMSE
×10−3

PIGPI 16.85 1.64 0.24 34.06 3.75 0.56
BM 18.81 1.66 0.27 42.00 3.90 1.00
PC 38.96 3.75 0.54 69.10 6.20 2.20
TSM 109.35 4.67 1.38 148.43 8.34 2.36

CR
%

PIGPI 98.6 100 99.2 79.7 95.9 92.2
BM 93.9 99.9 98.8 74 97.8 93.5
PC 84.3 96.7 94.9 78.1 96.5 93.8
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Example3-Burger’s Equation

We consider the viscous Burgers’ equation given by

∂u

∂t
− θ1u

∂u

∂s
+ θ2

∂2u

∂s2
= 0, s ∈ [0, 1], t ∈ [0, 0.1],

where θ2 > 0 is the viscosity. Burgers’ equation is a nonlinear equation. The boundary
conditions and initial conditions are given by

∂u(t, 0)

∂s
=
∂u(t, 1)

∂s
= 0, t ∈ [0, 0.1]

u(0, s) = exp{−100(s− 0.5)2}, s ∈ [0, 1]

Observation: y(xi) = u(xi,θ0) + εi, i = 1, . . . , n, where εi ∼ N(0, σe). The true value
for θ0 is (1, 0.1).

τ = {(i/20, j/20), i = 1, 2, . . . , 20, j = 1, 2, . . . , 20}. I = τ .
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Example3-Burger’s Equation
Compare with PDE identification method (API method):
Liu, R., Bianco, M. J., and Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the

Acoustical Society of America, 150(4):2364–2374

σe = 0.001 σe = 0.01
θ1 θ2 θ1 θ2

Bias
×10−3

PIGPI w IBC -4.60 -0.05 -15.49 -0.27
PIGPI w/o IBC -3.15 -0.19 -23.24 -1.60
API 10.76 -6.69 108.59 85.97
TSM -10.44 -2.19 -50.61 -8.55

SD
×10−3

PIGPI w IBC 2.49 0.19 11.31 0.79
PIGPI w/o IBC 2.84 0.22 19.21 1.34
API 6.15 0.51 299.73 258.97
TSM 4.01 0.35 27.24 2.72

RMSE
×10−3

PIGPI w IBC 5.23 0.20 19.18 0.83
PIGPI w/o IBC 4.24 0.29 30.15 2.09
API 12.39 6.71 318.66 272.74
TSM 11.18 2.22 57.46 8.97

CR
%

PIGPI w IBC 100 100 82 96.2
PIGPI w/o IBC 100 100 81.4 81.5
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Example3-Burger’s Equation

The improvement of taking advantages of boundary/initial conditions;

The boundary conditions can significantly reduce the error of posterior inference of PDE
solution.

PIGPI PIGPI+Boundary Conditions
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Figure 5: Comparison of RMSEs, PIGPI without boundary conditions v.s. PIGPI with boundary
conditions
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Summary

We propose a new method for parameter inference involves complex PDE models.

The proposed method doesn’t require time-consuming PDE numerical solver such as
finite element methods or finite difference methods.

We present methods for choosing discretization set and dimensional reduction to the
parameters.

Numerical examples are employed to illustrate the performance of the proposed
method.
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Q & A

Thank You!

zhaohui.li@gatech.edu
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