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Introduction

Partial differential equations (PDEs) are widely employed to describe the physical and
engineering phenomenon.

Some parameters, which are determined by material properties, engineering properties,
etc., are very important.

In real-world applications, directly measuring these parameters is sometimes impossible.

Estimating these parameters from experimental data is an important task, known as
model calibration, inverse problems, etc.

In this work, we focus on inferring unknown parameters in complex PDE models from
sparse, noisy observation data.
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Motivation Example

As a motivation example, we consider the long-range infrared light detection and ranging
(LIDAR) equation.

The equation is

∂u(t, s)

∂t
− θ1

∂2u(t, s)

∂s2
− θ2

∂u(t, s)

∂s
= θ3u(t, s), 0 ≤ t ≤ 20, 0 ≤ s ≤ 40,

with specified boundary and initial conditions.

Objective: estimate the parameters θ1, θ2, θ3 from the observation data
y(xi) = u(xi) + ε, where xi = (ti, si), εi ∼ N(0, σ2e), i = 1, . . . , n are random errors.
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Problem Formulation

Let’s start with a semi-linear partial differential equation (PDE):

Lu(x) = f(x, u(x),θ),

where x = (x1, . . . , xp), Lu(x) denotes a linear differential operator on u ∈ F (some Hilbert
space) of order a.
For example, in the motivation example,

Lu(x) = ∂u(x)
∂t − θ1

∂2u(x)
∂s2

− θ2
∂u(x)
∂s , where x = (t, s).

f(x, u(x),θ) = θ3u(x).
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Problem Formulation

In general, we can assume that the linear PDE operator has the form

Lu(x) =
∑
αi∈A

ci(θ,x)
∂|αi|u(x)

∂αi1x1 · · · ∂αipxp
,

where αi = (αi1, . . . , αip), αij = 0, 1, 2, . . . , and |αi| =
∑p

j=1 αij > 0. A = {αi, i = 1, ..., l}.
The order of L is defined by a = maxi |αi|.
For example, in the motivation example,

Lu(x) = ∂u(x)
∂t − θ1

∂2u(x)
∂s2

− θ2
∂u(x)
∂s .

c1 = 1, c2 = −θ1, c3 = −θ2, α1 = (1, 0),α2 = (0, 2),α3 = (0, 1).
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Basic Idea

The task is to estimate the parameters θ from the observation data
y(xi) = u(xi) + εi, i = 1, . . . , n. Let τ = {xi, i = 1, . . . , n}.
We assign a Gaussian process (GP) prior on u(x) denoted by U(x) ∼ GP(µ, σ2K(·, ·)).
To incorporate PDE constraints into GP prior, define a random variable W quantifying
the difference between GP U(x) and the PDE structure with given θ, i.e.,

W = sup
x∈Ω

∥LU(x)− f(x, U(x),θ)∥.

W ≡ 0 if and only if U is the solution of PDE with specified parameter θ.
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Basic Idea

However, in reality W is not computable. We approximate W by finite discretization on
the set I = {x1, . . . ,xnI} ⊂ Ω such that τ ⊂ I ⊂ Ω and similarly define WI as

WI = sup
x∈I

∥LU(x)− f(x, U(x),θ)∥.

As I getting denser and denser, we can claim that WI provides a good approximation to
W , this needs

1 Proper smoothness condition on the function space H (PDE solution provides good
smoothness properties.);

2 I should be dense in Ω, i.e., ∀x ∈ Ω, distance between x and I should be as small as
possible. I should be space filling.

3 From a computational point of view, |I| should be as small as possible.
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Basic Idea

Important properties of GP:

Assume constant mean µ and variance σ2, K(x,x′) has enough degree of smoothness,
i.e.LxLx′K(x,x′) exists and continuous.

Then for given parameter θ, LU(x) is also GP: LU(x) ∼ GP(0,LxLx′K(x,x′)).

Correlation: corr(LU(x), U(x′) = Lx(K(x,x′)).

We employ the product Matérn kernel:

K(x,x′) = ϕ1
∏p

i=1
21−ν

Γ(ν) (
√
2ν di

ϕ2i
)νBν(

√
2ν di

ϕ2i
), where di = |xi − x′i|, i = 1, . . . , p, Γ:

Gamma function, Bν : the modified Bessel function of the second kind.

Degree of freedom ν is set to be 2a+ δ to ensure that the 2a-th order derivatives of the
kernel with respect to any coordinate xi exists, where δ is a small positive number.
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Basic Idea

By treating WI as an approximation of W and assigning a noninformative prior for θ, the
posterior is immediately obtained

pΘ,U(I)|WI ,Y (τ )=y(τ ) (θ, u(I)|WI = 0, Y (τ ) = y(τ ))

∝πΘ (θ)× P (U(I) = u(I)|Θ = θ)

× P (Y (τ ) = y(τ )|U(I) = u(I),Θ = θ)

× P (WI = 0|Y (τ ) = y(τ ), U(I) = u(I),Θ = θ) .

∝ exp
{
− 1

2

[
log(|C|) + ∥u(I)− µ∥C−1

+ ∥u(τ )− y(τ )∥σ−2
e

+ log |K|+ ∥f(I, u(I),θ)−m{u(I)− µ}∥K−1

]}
.

Posterior inference for both θ and u(I) can be done by sampling from/optimizing this
(unnormalized) posterior density.

The method is called PDE-informed Gaussian Process Inference (PIGPI).
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Calculation of GP components:
C = K(I, I)

m = LK(I, I)K(I, I)−1

K = LKL(I, I)− LK(I, I)K(I, I)−1KL(I, I)
,

K(I, I): an N ×N matrix with (i, j) element K(xi,xj);

LK(I, I), : an N ×N matrix with (i, j) element Lx(K(xi,xj));

KL(I, I) : an N ×N matrix with (i, j) element Lx′(K(xi,xj));

LKL(I, I): an N ×N matrix with (i, j) element Lx(Lx′(K(xi,xj)));
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Handling Non-linear and Parameter-dependent Operators

Two issues for PIGPI method proposed in previous slides:

When unknown parameters θ involve in the PDE operator, the covariance, i.e., K, is
parameter dependent. Thus, updating parameter involves updating K, which is a heavy
computational task in MCMC. Repeated evaluation of posterior density (change θ)
involves recalculating K, which needs O(n3I) computations.

Till now, we assume the PDE operator is linear. However, for many applications,
parameter inference from nonlinear PDE are very important and challenging.

To solve these problems, we propose a novel method that

can decouple the dependence between parameter θ and covariance matrix K . Thus K is
fixed once I is given, i.e., no need to update when evaluating posterior density.

can deal with nonlinear PDEs.
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Handling Non-linear and Parameter-dependent Operators

To demonstrate, we consider a nonlinear PDE,

∂u

∂t
(x) = θ1u(x)

∂u

∂s
(x)− θ2

∂2u

∂s2
(x).

This PDE is called Burger’s equation, the PDE operator is Lu = ∂u
∂t − θ1u

∂u
∂s + θ2

∂2u
∂s2

. It is

Nonlinear: u(x)∂u∂s (x);

Parameter-operator dependent: −θ1u∂u
∂s + θ2

∂2u
∂s2

.

We will first show how our method solves the parameter inference involving Burger’s equation.
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Handling Non-linear and Parameter-dependent Operators

Burger’s equation,
∂u

∂t
(x) = θ1u(x)

∂u

∂s
(x)− θ2

∂2u

∂s2
(x).

Define an equivalent PDE system,
∂u
∂s (x) = u2(x),
∂u2
∂s (x) = u3(x),
∂u
∂t (x) = θ1u(x)u2(x)− θ2u3(x),

(1)

This system of PDEs is called augmented PDE.

The augmented PDE system has a linear, parameter independent operator.

PDE still nonlinear (Of course).
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Handling Non-linear and Parameter-dependent Operators

Several properties are helpful for constructing PIGPI method based on augmented PDE:

It can be shown these two PDE (systems) are equivalent:

Classical solution of original PDE can generalize to a classical solution of augmented PDE;
Classical solution of augmented PDE is also a classical solution of original PDE;

The augmented PDE contains no parameters in left-hand side, i.e., the PDE operator is
independent to parameters;

PDE operator for augmented PDE is a linear operator.

It is natural to apply the proposed PIGPI to the augmented multi-variate PDE.
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Discussion - Non-uniqueness of Augmentation

Lowest degree of derivative (LDD) principal: It is easy to see that the augmentation is not

unique. For example, consider the equation ∂u
∂t (x) = θ1u(x)

∂u
∂s (x)− θ2

∂2u
∂s2

(x), the
augmentation can be (1) or

∂u
∂s (x) = u2(x),
∂2u
∂s2

(x) = u3(x),
∂u
∂t (x) = θ1u(x)u2(x)− θ2u3(x),

We recommend using (1). Reasons: (a). PDE (1) is a 1-order PDE while the second one is
2-order PDE. We prefer to use a lower-order PDE. (b). System (1) produces a simpler
covariance matrix K.
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Handling Non-linear and Parameter-dependent Operators

Name Original Form Augmented Form

Fisher’s Equation ∂u
∂t −D ∂2u

∂s2 = ru(1− u)
∂2u1

∂s2 = u2
∂u1

∂t = D ∂2u
∂s2 + ru(1− u)

Telegraph Equation ∂2u
∂t2 + k ∂u

∂t = a2 ∂2u
∂x2 + bu

∂u1

∂t = u2
∂2u1

∂x2 = u3
∂u2

∂t = a2u3 + bu− ku2

Nonlinear Heat Equa-
tion

∂u
∂t = a ∂

∂s

(
eλu ∂u

∂s

)
+ b+ c1e

βu+
c2e

γu

∂u1

∂s = u2
∂u2

∂s = u3
∂u1

∂t = aλeλu1u22 + aeλu1u3
+b+ c1e

βu1 + c2e
γu1

Generalized Ko-
rteweg–de Vries Equa-
tion

∂u
∂t + ∂3u

∂s3 + g(u)∂u∂s = 0
∂u1

∂s = u2
∂u1

∂t + ∂3u2

∂s2 = g(u1)u2

Reaction-Diffusion Sys-
tem

∂u
∂t = a∂2u

∂s2 + F (u, v),
∂v
∂t = a∂2v

∂s2 +G(u, v)

∂2u1

∂s2 = u2
∂2v1
∂s2 = v2
∂u1

∂t = au2 + F (u1, v1)
∂v1
∂t = av2 +G(u1, v1)
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Construction of I

For many PDE based problems, Ω ⊂ Rp, where p = 2, 3, or 4. It is vital to chose proper
discretization I:

o I should be dense in Ω, i.e., ∀x ∈ Ω, distance between x and I should be as small as
possible. I should be space filling.

o From a computational point of view, |I| should be as small as possible.

In practical applications, it is a common situation that the observation data are collected ahead
of data analysis. Thus, we assume that τ is known and fixed. Method for constructing I:

0 Construct a (large) candidate point set D of size N (N >> nI);

1 Start with I = τ .

2 For i = n+ 1, . . . , nI , repeat

2.1 Find xi = argmaxx∈Dd(x, I);
2.2 I = I ∪ xi.

3 Output I.
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Handling Initial/Boundary Conditions

Two types of Initial/Boundary Conditions (IBCs): Dirichlet IBCs and Non-Dirichlet IBCs.
Dirichlet IBCs are given by the known value of PDE solution on the specific boundary regions,
i.e.,

u(x) = b1(x),x ∈ Γ1. (2)

The initial conditions have the same form as the Dirichlet boundary condition, i.e., the known
value of PDE solution at time t = 0. The Non-Dirichlet boundary condition can be
represented by a differential operator

Bx,θu(x) = b2(x, u(x),θ),x ∈ Γ2, (3)

where B is a differential operator with order b > 0, which has the similar form with L that we
defined in previous sections.
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Handling Initial/Boundary Conditions

For non-Dirichlet Boundary conditions, we define the comprehensive operator

Lu(x) =

{
Lu(x), x ∈ Ω\Γ2

Bx,θu(x), x ∈ Γ2
.

Similarly, define the comprehensive source term

f(x, u(x),θ) =

{
f(x, u(x),θ), x ∈ Ω\Γ2

b2(x, u(x),θ), x ∈ Γ2
.

For non-Dirichlet boundary conditions, it is natural to incorporate the boundary information by
including several properly chosen boundary points and replacing L and f with their
comprehensive forms.
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Handling Initial/Boundary Conditions

For the Dirichlet boundary condition, we assume the value of PDE solution is known ahead on
γ1 ahead of inference.

pΘ,U(I)|WI ,Y (τ )=y(τ ),U(I1)=u(I1)) (θ, u(I)|WI = 0, Y (τ ) = y(τ ), U(I1) = b(I1))

∝P (Θ = θ, U(I) = u(I),WI = 0, Y (τ ) = y(τ ), U(I1) = b(I1))

=πΘ (θ)× P (U(I) = u(I))

× P (Y (τ ) = y(τ )|U(I) = u(I))× P (U(I1) = u(I1)|U(I) = u(I))

× P (WI = 0|U(I1) = u(I1), U(I) = u(I),Θ = θ) .

∝ exp
{
− 1

2

[
|I| log(2π) + log(|C|) + ∥u(I)− µ(I)∥C−1

+ n log(2πσ2e) + ∥u(τ )− y(τ )∥σ−2
e

+ ∥m(I1)− y(I1)∥C−1
b

+ |I| log(2πσ2u) + log |K|+ ∥f(I, u(I),θ)− Lµ(I)−m{u(I)− µ(I)}∥K−1
b

]}
, (4)

where Cb = K(I1, I1)−K(I1, I)K(I, I)−1K(I, I1),
Kb = LKL(I, I)− LK(I, I ∪ I1)K(I ∪ I1, I ∪ I1)

−1KL(I ∪ I1, I).
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Dimensional Reduction for U(I)

The parameter space is of dimension lnI + d, l is the number of PDE components. Thus,
when nI is large, optimizing or sampling from posterior are challenging tasks.

The Karhunen Loeve (KL) expansion to the GP U(x) is given by

U(x) =

∞∑
i=1

Zi

√
λiψi(x),

√
λi are eigenvectors of kernel function of GP in decreasing order, we can choose an

M ∈ N such that λi for i > M are negligible, then the GP U(x) is approximated by

U(x) ≈
M∑
i=1

Zi

√
λiψi(x).

M is chosen such that
∑M

i=1 λi/
∑nI

i=1 λi ≥ 99.99%.

U(x) is parametrized by (Z1, Z2, . . . , ZM ).
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Summary of PIGPI Procedure

Algorithm 1 Posterior Inference for PIGPI Procedure

1: Input data D = {(yi,xi), i = 1, . . . , n}, selecting I using method proposed in previous
slides.

2: Train Gaussian process model based on D, obtain the posterior density.
3: Otimize the posterior density to obtain MAP estimation of u(I) and θ.
4: Take MAP estimation obtained from Step 3 as an initial state. Draw posterior sample for
u(I), θ and σ2e using HMC algorithm.

Note: Normal approximation can be used as a fast approximation of posterior uncertainty
quantification.
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Numerical Illustration - Preparation

Evaluation metrics

Root means square error (RMSE) of MAP of θ: Evaluate the accuracy of parameter
estimation.

RMSE of MAP of u(xI): Evaluate the accuracy of PDE solution estimation.

Computation time for MAP optimization: Evaluate the efficiency of alternative methods.
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Numerical Illustration - Preparation

Proposed methods

PIGPI (with or without augmentation)

Benchmark methods

Maximum likelihood estimation (MLE): Gold standard, but needs a large number of
evaluations of PDE solution.

Two-Stage method (TSM) (Rai and Tripathi,2019).

Automated PDE identification (API) method (Liu et. al 2021).

Methods (BM and PC) proposed by Xun et. al.(2013)

Bayesian optimization method (BOM), a.k.a. Expected Improvement (EI) (Jones et. al.,
1998).

Rai P.K & Tripathi, S. (2019) Gaussian process for estimating parameters of partial differential equations918 and its application to the Richards equation,
Stochastic Environmental Research and Risk Assessment,33, pp. 1629–1649.
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical
Association, 108(503), 1009-1020.
Liu, R., Bianco, M. J., & Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the Acoustical Society of America, 150(4),
2364-2374.
Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4), 455-492.
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Example2-Long-Range Infrared Light Detection and Ranging

The equation is given by

∂u(t, s)

∂t
− θD

∂2u(t, s)

∂s2
− θS

∂u(t, s)

∂s
= θAu(t, s), t ∈ [0, 20], s ∈ [0, 40].

The boundary condition is given by u(t, 0) = 0 and initial condition is
u(0, s) = {1 + 0.1 ∗ (20− s)2}−1.

Observation: y(xi) = u(xi,θ0) + εi, i = 1, . . . , n, where εi ∼ N(0, σe). The true value
for θ0 is (1, 0.1, 0.1).

θD and θS are involved in the linear PDE operator.;

This example can be found in the JASA paper:
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of
partial differential equation models. Journal of the American Statistical Association,
108(503), 1009-1020.
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Example-Long-Range Infrared Light Detection and Ranging

The augmented PDE for LIDAR equation that satisfies the “lowest order of derivative”
principal is given as follows,

∂u1(t, s)

∂s
= u2(t, s),

∂u2(t, s)

∂s
= u3(t, s),

∂u1(t, s)

∂t
= θDu3(t, s) + θSu2(t, s) + θAu1(t, s).
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Example-Long-Range Infrared Light Detection and Ranging

Both PIGPI with augmentation and PIGPI without augmentation can be applied.

Use Adam algorithm, 2500 iterations for each method.
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Figure 1: Comparison of computational time
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Example-Long-Range Infrared Light Detection and Ranging

Comparing with methods proposed in the paper:
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of
partial differential equation models. Journal of the American Statistical Association,
108(503), 1009-1020.

Two methods are proposed in this paper, the Bayesian method (BM) and the parameter
cascading method (PC).

We compare with BM, PC, and TSM.

n = 800, two cases for variance of random error σe = 0.02 or σe = 0.05.
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Example-Long-Range Infrared Light Detection and Ranging

σe = 0.02 σe = 0.05

θ1 θ2 θ3 θ1 θ2 θ3

Bias
×10−3

PIGPI -14.00 -0.20 -0.12 -27.35 -0.34 -0.29
BM -16.50 -0.40 -0.20 -35.60 1.00 0.60
PC -29.70 -0.10 -0.30 -55.90 -0.20 -0.50
TSM -105.33 -2.69 -1.28 -140.12 -4.05 -2.12

SD
×10−3

PIGPI 9.37 1.63 0.21 20.31 3.74 0.48
BM 9.10 1.60 0.20 22.20 3.80 0.50
PC 24.90 3.80 0.50 40.50 6.20 0.80
TSM 29.42 3.82 0.52 49.00 7.29 1.03

RMSE
×10−3

PIGPI 16.85 1.64 0.24 34.06 3.75 0.56
BM 18.81 1.66 0.27 42.00 3.90 1.00
PC 38.96 3.75 0.54 69.10 6.20 2.20
TSM 109.35 4.67 1.38 148.43 8.34 2.36

CR
%

PIGPI 98.6 100 99.2 79.7 95.9 92.2
BM 93.9 99.9 98.8 74 97.8 93.5
PC 84.3 96.7 94.9 78.1 96.5 93.8
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Example-Burger’s Equation

We consider the viscous Burgers’ equation given by

∂u

∂t
− θ1u

∂u

∂s
+ θ2

∂2u

∂s2
= 0, s ∈ [0, 1], t ∈ [0, 0.1],

where θ2 > 0 is the viscosity. Burgers’ equation is a nonlinear equation. The boundary
conditions and initial conditions are given by

∂u(t, 0)

∂s
=
∂u(t, 1)

∂s
= 0, t ∈ [0, 0.1]

u(0, s) = exp{−100(s− 0.5)2}, s ∈ [0, 1]

Compared with automated PDE identification method (API method).

The method is proposed in the paper:
Liu, R., Bianco, M. J., and Gerstoft, P. (2021). Automated partial differential equation
identification. The Journal of the Acoustical Society of America, 150(4):2364–2374

Zhaohui Li (Georgia Tech) PIGPI February 7, 2023 31 / 39



Example-Burger’s Equation

σe = 0.001 σe = 0.01
θ1 θ2 θ1 θ2

Bias
×10−3

PIGPI w IBC -4.60 -0.05 -15.49 -0.27
PIGPI w/o IBC -3.15 -0.19 -23.24 -1.60
API 10.76 -6.69 108.59 85.97
TSM -10.44 -2.19 -50.61 -8.55

SD
×10−3

PIGPI w IBC 2.49 0.19 11.31 0.79
PIGPI w/o IBC 2.84 0.22 19.21 1.34
API 6.15 0.51 299.73 258.97
TSM 4.01 0.35 27.24 2.72

RMSE
×10−3

PIGPI w IBC 5.23 0.20 19.18 0.83
PIGPI w/o IBC 4.24 0.29 30.15 2.09
API 12.39 6.71 318.66 272.74
TSM 11.18 2.22 57.46 8.97

CR
%

PIGPI w IBC 100 100 82 96.2
PIGPI w/o IBC 100 100 81.4 81.5
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Example-Burger’s Equation

The improvement of taking advantage of initial/boundary conditions;

The boundary conditions are helpful to improve the estimation of parameters (Subplot 1).

The boundary conditions can significantly reduce the error of posterior inference of PDE
solution (Subplot 2).
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Figure 2: Comparison of MAPEs, PIGPI without boundary conditions v.s. PIGPI with boundary
conditions

Zhaohui Li (Georgia Tech) PIGPI February 7, 2023 33 / 39



Example4-Reaction-Diffusion Equation

We consider a coupled PDE system, i.e., reaction-diffusion equation. The PDE system is
given by

∂u

∂t
= θ1∇2

su(x) + θ3 − (θ2 + 1)u+ u2v

∂v

∂t
= θ1∇2

sv(x) + θ2u− u2v,

with boundary conditions
n · ∇su = 0, n · ∇sv = 0, t× s ∈ [0, 1]× {[0, 1]× {0, 1} ∪ {0, 1} × [0, 1]},
and initial conditions u(0, s) = 2 + 0.25s2, v(0, s) = 1 + 0.8s1, s ∈ [0, 1]2.

The task is to estimate the parameters θ = (θ1, θ2, θ3) from the observational data.

It can be seen that the PDE has two components. Moreover, parameter θ1 is involved
into the PDE operator.
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Example-Reaction-Diffusion Equation

Now we consider a challenging case:

Assume that we can only observe one component u, i.e., v is censored in physical
experiment;

This is very common in physics and engineering, e.g., one of the components are
expensive to measure.

PIGPI can be applied to censored observation cases.
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Example-Reaction-Diffusion Equation

Table 1: The RMSE of parameter inference obtained by MLE, PIGPI and BOM. The average
computational time for parameter inference using MLE, PIGPI, TSM and BOM.The proposed method
is emphasized with bold face font.

n 30 60 120 240

θ1
×10−3

MLE 0.2 0.2 0.2 0.1
PIGPI 49.3 7.0 5.2 3.8
BOM 1760.3 1208.9 464.8 1385.3

θ2
×10−3

MLE 0.8 0.6 0.4 0.3
PIGPI 17.9 3.7 2.5 2.4
BOM 272.3 271.9 275.1 269.6

θ3
×10−3

MLE 1.3 1.1 0.8 0.6
PIGPI 321.2 64.9 36.5 31.9
BOM 499.2 487.7 504.2 488.5

Computational
Time
(sec)

MLE 43505.0 41217.6 45458.9 49449.9
PIGPI 469.1 465.4 470.2 471.8
BOM 1354.0 1358.9 1369.1 1358.4
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Example-Reaction-Diffusion Equation

Assume that v is censored.

Comparing L2 errors of parameter estimation.

Two-Stage method is not applicable.

Table 2: The mean of RMSE of PDE solution estimation, v is censored. The MAPG-PDE are able to
reconstruct the fully censored components.The proposed method is emphasized with bold face font.

n 30 60 120 240

u
×10−3

MLE 0.23 0.18 0.13 0.10
PIGPI 10.35 2.81 1.54 1.25
BOM 58.55 61.56 58.69 60.86

v(censored)
×10−3

MLE 0.34 0.31 0.21 0.16
PIGPI 159.81 26.95 11.78 8.57
BOM 92.12 101.70 102.14 97.15
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Summary

Our works and contributions:

We propose a new method for parameter inference involves complex PDE models, called
manifold-constrained Gaussian process inference for PDE parameter (PIGPI).

The proposed method bypasses the requirement of time-consuming PDE solver
such as the finite element method.

Our method is flexible to Nonlinear PDE and PDE systems with unobserved
components.

Our method is scalable to large data set:
We present a method for determining the discretization set for the input variable of the PDE
solution.
We propose a dimensional reduction method that is helpful for reducing the computational
complexity when the discretization set is large.

Our method is able to incorporate initial/boundary conditions.

Numerical examples are employed to illustrate the performance of the proposed method.
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Q & A

Thank You!

zhaohui.li@gatech.edu
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