Inference of Partial Differential Equations via Constrained Gaussian Processes

Zhaohui Li
Georgia Institute of Technology

February 7, 2023

Joint work with Shihao Yang (Georgia Tech) and Jeff Wu (Georgia Tech)
(1) Introduction
(2) Methodology

- Motivation Example
- Problem Formulation
- Methodology
(3) Numerical Illustrations
- Example-Long-Range Infrared Light Detection and Ranging Equation
- Example-Burger's Equation
- Example-Reaction-Diffusion Equation

4 Summary

Introduction

- Partial differential equations (PDEs) are widely employed to describe the physical and engineering phenomenon.
- Some parameters, which are determined by material properties, engineering properties, etc., are very important.
- In real-world applications, directly measuring these parameters is sometimes impossible.
- Estimating these parameters from experimental data is an important task, known as model calibration, inverse problems, etc.
- In this work, we focus on inferring unknown parameters in complex PDE models from sparse, noisy observation data.

Motivation Example

- As a motivation example, we consider the long-range infrared light detection and ranging (LIDAR) equation.
- The equation is

$$
\frac{\partial u(t, s)}{\partial t}-\theta_{1} \frac{\partial^{2} u(t, s)}{\partial s^{2}}-\theta_{2} \frac{\partial u(t, s)}{\partial s}=\theta_{3} u(t, s), 0 \leq t \leq 20,0 \leq s \leq 40
$$

with specified boundary and initial conditions.

- Objective: estimate the parameters $\theta_{1}, \theta_{2}, \theta_{3}$ from the observation data $y\left(\boldsymbol{x}_{i}\right)=u\left(\boldsymbol{x}_{i}\right)+\varepsilon$, where $\boldsymbol{x}_{i}=\left(t_{i}, s_{i}\right), \varepsilon_{i} \sim N\left(0, \sigma_{e}^{2}\right), i=1, \ldots, n$ are random errors.

Problem Formulation

Let's start with a semi-linear partial differential equation (PDE):

$$
\mathcal{L} u(\boldsymbol{x})=f(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta}),
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{p}\right), \mathcal{L} u(\boldsymbol{x})$ denotes a linear differential operator on $u \in \mathcal{F}$ (some Hilbert space) of order a.
For example, in the motivation example,

- $\mathcal{L} u(\boldsymbol{x})=\frac{\partial u(\boldsymbol{x})}{\partial t}-\theta_{1} \frac{\partial^{2} u(\boldsymbol{x})}{\partial s^{2}}-\theta_{2} \frac{\partial u(\boldsymbol{x})}{\partial s}$, where $\boldsymbol{x}=(t, s)$.
- $f(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta})=\theta_{3} u(\boldsymbol{x})$.

Problem Formulation

In general, we can assume that the linear PDE operator has the form

$$
\mathcal{L} u(\boldsymbol{x})=\sum_{\boldsymbol{\alpha}_{i} \in A} c_{i}(\boldsymbol{\theta}, \boldsymbol{x}) \frac{\partial^{\left|\boldsymbol{\alpha}_{i}\right|} u(\boldsymbol{x})}{\partial^{\alpha_{i 1}} x_{1} \cdots \partial^{\alpha_{i p}} x_{p}},
$$

where $\boldsymbol{\alpha}_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i p}\right), \alpha_{i j}=0,1,2, \ldots$, and $\left|\boldsymbol{\alpha}_{i}\right|=\sum_{j=1}^{p} \alpha_{i j}>0 . A=\left\{\boldsymbol{\alpha}_{i}, i=1, \ldots, l\right\}$.
The order of \mathcal{L} is defined by $a=\max _{i}\left|\boldsymbol{\alpha}_{i}\right|$.
For example, in the motivation example,

- $\mathcal{L} u(\boldsymbol{x})=\frac{\partial u(\boldsymbol{x})}{\partial t}-\theta_{1} \frac{\partial^{2} u(\boldsymbol{x})}{\partial s^{2}}-\theta_{2} \frac{\partial u(\boldsymbol{x})}{\partial s}$.
- $c_{1}=1, c_{2}=-\theta_{1}, c_{3}=-\theta_{2}, \boldsymbol{\alpha}_{1}=(1,0), \boldsymbol{\alpha}_{2}=(0,2), \boldsymbol{\alpha}_{3}=(0,1)$.

Basic Idea

- The task is to estimate the parameters $\boldsymbol{\theta}$ from the observation data

$$
y\left(\boldsymbol{x}_{i}\right)=u\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}, i=1, \ldots, n . \text { Let } \boldsymbol{\tau}=\left\{\boldsymbol{x}_{i}, i=1, \ldots, n\right\} .
$$

- We assign a Gaussian process (GP) prior on $u(\boldsymbol{x})$ denoted by $U(\boldsymbol{x}) \sim \operatorname{GP}\left(\mu, \sigma^{2} \mathcal{K}(\cdot, \cdot)\right)$.
- To incorporate PDE constraints into GP prior, define a random variable W quantifying the difference between GP $U(\boldsymbol{x})$ and the PDE structure with given $\boldsymbol{\theta}$, i.e.,

$$
W=\sup _{\boldsymbol{x} \in \Omega}\|\mathcal{L} U(\boldsymbol{x})-f(\boldsymbol{x}, U(\boldsymbol{x}), \boldsymbol{\theta})\| .
$$

- $W \equiv 0$ if and only if U is the solution of PDE with specified parameter θ.

Basic Idea

- However, in reality W is not computable. We approximate W by finite discretization on the set $\boldsymbol{I}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n_{I}}\right\} \subset \Omega$ such that $\boldsymbol{\tau} \subset \boldsymbol{I} \subset \Omega$ and similarly define $W_{\boldsymbol{I}}$ as

$$
W_{\boldsymbol{I}}=\sup _{\boldsymbol{x} \in \boldsymbol{I}}\|\mathcal{L} U(\boldsymbol{x})-f(\boldsymbol{x}, U(\boldsymbol{x}), \boldsymbol{\theta})\| .
$$

- As I getting denser and denser, we can claim that W_{I} provides a good approximation to W, this needs

1 Proper smoothness condition on the function space \mathcal{H} (PDE solution provides good smoothness properties.);
$2 \boldsymbol{I}$ should be dense in Ω, i.e., $\forall \boldsymbol{x} \in \Omega$, distance between \boldsymbol{x} and \boldsymbol{I} should be as small as possible. I should be space filling.
3 From a computational point of view, $|\boldsymbol{I}|$ should be as small as possible.

Basic Idea

Important properties of GP:

- Assume constant mean μ and variance $\sigma^{2}, \mathcal{K}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ has enough degree of smoothness, i.e. $\mathcal{L}_{\boldsymbol{x}} \mathcal{L}_{\boldsymbol{x}^{\prime}} \mathcal{K}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ exists and continuous.
- Then for given parameter $\boldsymbol{\theta}, \mathcal{L} U(\boldsymbol{x})$ is also GP: $\mathcal{L} U(\boldsymbol{x}) \sim \operatorname{GP}\left(0, \mathcal{L}_{x} \mathcal{L}_{x^{\prime}} \mathcal{K}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)$.
- Correlation: $\operatorname{corr}\left(\mathcal{L} U(\boldsymbol{x}), U\left(\boldsymbol{x}^{\prime}\right)=\mathcal{L}_{\boldsymbol{x}}\left(\mathcal{K}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)\right.$.

We employ the product Matérn kernel:

- $\mathcal{K}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\phi_{1} \prod_{i=1}^{p} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu} \frac{d_{i}}{\phi_{2 i}}\right)^{\nu} B_{\nu}\left(\sqrt{2 \nu} \frac{d_{i}}{\phi_{2 i}}\right)$, where $d_{i}=\left|x_{i}-x_{i}^{\prime}\right|, i=1, \ldots, p, \Gamma$: Gamma function, B_{ν} : the modified Bessel function of the second kind.
- Degree of freedom ν is set to be $2 a+\delta$ to ensure that the $2 a$-th order derivatives of the kernel with respect to any coordinate x_{i} exists, where δ is a small positive number.

Basic Idea

- By treating W_{I} as an approximation of W and assigning a noninformative prior for $\boldsymbol{\theta}$, the posterior is immediately obtained

$$
\begin{aligned}
& \quad p_{\boldsymbol{\Theta}, U(\boldsymbol{I}) \mid W_{\boldsymbol{I}}, Y(\boldsymbol{\tau})=y(\boldsymbol{\tau})}\left(\boldsymbol{\theta}, u(\boldsymbol{I}) \mid W_{\boldsymbol{I}}=0, Y(\boldsymbol{\tau})=y(\boldsymbol{\tau})\right) \\
& \propto \pi_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \times P(U(\boldsymbol{I})=u(\boldsymbol{I}) \mid \boldsymbol{\Theta}=\boldsymbol{\theta}) \\
& \quad \times P(Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}) \mid U(\boldsymbol{I})=u(\boldsymbol{I}), \boldsymbol{\Theta}=\boldsymbol{\theta}) \\
& \quad \times P\left(W_{\boldsymbol{I}}=0 \mid Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}), U(\boldsymbol{I})=u(\boldsymbol{I}), \boldsymbol{\Theta}=\boldsymbol{\theta}\right) . \\
& \propto \exp \left\{-\frac{1}{2}\left[\log (|C|)+\|u(\boldsymbol{I})-\mu\|_{C^{-1}}\right.\right. \\
& \quad+\|u(\boldsymbol{\tau})-y(\boldsymbol{\tau})\|_{\sigma_{e}^{-2}} \\
& \left.\left.\quad+\log |K|+\|f(\boldsymbol{I}, u(\boldsymbol{I}), \boldsymbol{\theta})-m\{u(\boldsymbol{I})-\mu\}\|_{K^{-1}}\right]\right\} .
\end{aligned}
$$

- Posterior inference for both $\boldsymbol{\theta}$ and $u(\boldsymbol{I})$ can be done by sampling from/optimizing this (unnormalized) posterior density.
- The method is called PDE-informed Gaussian Process Inference (PIGPI).

Calculation of GP components:

$$
\left\{\begin{array}{l}
C=\mathcal{K}(\boldsymbol{I}, \boldsymbol{I}) \\
m=\mathcal{L K}(\boldsymbol{I}, \boldsymbol{I}) \mathcal{K}(\boldsymbol{I}, \boldsymbol{I})^{-1} \\
K=\mathcal{L K} \mathcal{L}(\boldsymbol{I}, \boldsymbol{I})-\mathcal{L} \mathcal{K}(\boldsymbol{I}, \boldsymbol{I}) \mathcal{K}(\boldsymbol{I}, \boldsymbol{I})^{-1} \mathcal{K} \mathcal{L}(\boldsymbol{I}, \boldsymbol{I})
\end{array}\right.
$$

- $\mathcal{K}(\boldsymbol{I}, \boldsymbol{I})$: an $N \times N$ matrix with (i, j) element $\mathcal{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$;
- $\mathcal{L K}(\boldsymbol{I}, \boldsymbol{I})$, : an $N \times N$ matrix with (i, j) element $\mathcal{L}_{\boldsymbol{x}}\left(\mathcal{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)$;
- $\mathcal{K} \mathcal{L}(\boldsymbol{I}, \boldsymbol{I})$: an $N \times N$ matrix with (i, j) element $\mathcal{L}_{\boldsymbol{x}^{\prime}}\left(\mathcal{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)$;
- $\mathcal{L K} \mathcal{L}(\boldsymbol{I}, \boldsymbol{I}):$ an $N \times N$ matrix with (i, j) element $\mathcal{L}_{\boldsymbol{x}}\left(\mathcal{L}_{\boldsymbol{x}^{\prime}}\left(\mathcal{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)\right)$;

Handling Non-linear and Parameter-dependent Operators

Two issues for PIGPI method proposed in previous slides:

- When unknown parameters $\boldsymbol{\theta}$ involve in the PDE operator, the covariance, i.e., K, is parameter dependent. Thus, updating parameter involves updating K, which is a heavy computational task in MCMC. Repeated evaluation of posterior density (change $\boldsymbol{\theta}$) involves recalculating K, which needs $O\left(n_{I}^{3}\right)$ computations.
- Till now, we assume the PDE operator is linear. However, for many applications, parameter inference from nonlinear PDE are very important and challenging.
To solve these problems, we propose a novel method that
- can decouple the dependence between parameter θ and covariance matrix K. Thus K is fixed once \boldsymbol{I} is given, i.e., no need to update when evaluating posterior density.
- can deal with nonlinear PDEs.

Handling Non-linear and Parameter-dependent Operators

To demonstrate, we consider a nonlinear PDE,

$$
\frac{\partial u}{\partial t}(\boldsymbol{x})=\theta_{1} u(\boldsymbol{x}) \frac{\partial u}{\partial s}(\boldsymbol{x})-\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}(\boldsymbol{x})
$$

This PDE is called Burger's equation, the PDE operator is $\mathcal{L} u=\frac{\partial u}{\partial t}-\theta_{1} u \frac{\partial u}{\partial s}+\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}$. It is

- Nonlinear: $u(\boldsymbol{x}) \frac{\partial u}{\partial s}(\boldsymbol{x})$;
- Parameter-operator dependent: $-\theta_{1} u \frac{\partial u}{\partial s}+\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}$.

We will first show how our method solves the parameter inference involving Burger's equation.

Handling Non-linear and Parameter-dependent Operators

Burger's equation,

$$
\frac{\partial u}{\partial t}(\boldsymbol{x})=\theta_{1} u(\boldsymbol{x}) \frac{\partial u}{\partial s}(\boldsymbol{x})-\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}(\boldsymbol{x}) .
$$

Define an equivalent PDE system,

$$
\begin{cases}\frac{\partial u}{\partial s}(\boldsymbol{x}) & =u_{2}(\boldsymbol{x}) \tag{1}\\ \frac{\partial u_{2}}{\partial s}(\boldsymbol{x}) & =u_{3}(\boldsymbol{x}), \\ \frac{\partial u}{\partial t}(\boldsymbol{x}) & =\theta_{1} u(\boldsymbol{x}) u_{2}(\boldsymbol{x})-\theta_{2} u_{3}(\boldsymbol{x}),\end{cases}
$$

- This system of PDEs is called augmented PDE.
- The augmented PDE system has a linear, parameter independent operator.
- PDE still nonlinear (Of course).

Handling Non-linear and Parameter-dependent Operators

Several properties are helpful for constructing PIGPI method based on augmented PDE:

- It can be shown these two PDE (systems) are equivalent:
- Classical solution of original PDE can generalize to a classical solution of augmented PDE;
- Classical solution of augmented PDE is also a classical solution of original PDE;
- The augmented PDE contains no parameters in left-hand side, i.e., the PDE operator is independent to parameters;
- PDE operator for augmented PDE is a linear operator.

It is natural to apply the proposed PIGPI to the augmented multi-variate PDE.

Discussion - Non-uniqueness of Augmentation

Lowest degree of derivative (LDD) principal: It is easy to see that the augmentation is not unique. For example, consider the equation $\frac{\partial u}{\partial t}(\boldsymbol{x})=\theta_{1} u(\boldsymbol{x}) \frac{\partial u}{\partial s}(\boldsymbol{x})-\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}(\boldsymbol{x})$, the augmentation can be (1) or

$$
\begin{cases}\frac{\partial u}{\partial s}(\boldsymbol{x}) & =u_{2}(\boldsymbol{x}) \\ \frac{\partial^{2} u}{\partial s^{2}}(\boldsymbol{x}) & =u_{3}(\boldsymbol{x}), \\ \frac{\partial u}{\partial t}(\boldsymbol{x}) & =\theta_{1} u(\boldsymbol{x}) u_{2}(\boldsymbol{x})-\theta_{2} u_{3}(\boldsymbol{x})\end{cases}
$$

We recommend using (1). Reasons: (a). PDE (1) is a 1 -order PDE while the second one is 2-order PDE. We prefer to use a lower-order PDE. (b). System (1) produces a simpler covariance matrix K.

Handling Non-linear and Parameter-dependent Operators

Name	Original Form	Augmented Form
Fisher's Equation	$\frac{\partial u}{\partial t}-D \frac{\partial^{2} u}{\partial s^{2}}=r u(1-u)$	$\begin{aligned} & \frac{\partial^{2} u_{1}}{\partial s^{2}}=u_{2} \\ & \frac{\partial u_{1}}{\partial t}=D \frac{\partial^{2} u}{\partial s^{2}}+r u(1-u) \end{aligned}$
Telegraph Equation	$\frac{\partial^{2} u}{\partial t^{2}}+k \frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}+b u$	$\begin{aligned} & \frac{\partial u_{1}}{\partial t}=u_{2} \\ & \frac{\partial^{2} u_{1}}{\partial x^{2}}=u_{3} \\ & \frac{\partial u_{2}}{\partial t}=a^{2} u_{3}+b u-k u_{2} \end{aligned}$
Nonlinear Heat Equation	$\begin{aligned} & \frac{\partial u}{\partial t}=a \frac{\partial}{\partial s}\left(e^{\lambda u} \frac{\partial u}{\partial s}\right)+b+c_{1} e^{\beta u}+ \\ & c_{2} e^{\gamma u} \end{aligned}$	$\begin{aligned} & \frac{\partial u_{1}}{\partial s}=u_{2} \\ & \frac{\partial u_{2}}{\partial s}=u_{3} \\ & \frac{\partial u_{1}}{\partial t}=a \lambda e^{\lambda u_{1}} u_{2}^{2}+a e^{\lambda u_{1}} u_{3} \\ & +b+c_{1} e^{\beta u_{1}}+c_{2} e^{\gamma u_{1}} \end{aligned}$
	$\frac{\partial u}{\partial t}+\frac{\partial^{3} u}{\partial s^{3}}+g(u) \frac{\partial u}{\partial s}=0$	$\begin{aligned} & \frac{\partial u_{1}}{\partial s}=u_{2} \\ & \frac{\partial u_{1}}{\partial t}+\frac{\partial^{3} u_{2}}{\partial s^{2}}=g\left(u_{1}\right) u_{2} \end{aligned}$
Reaction-Diffusion System	$\begin{aligned} & \frac{\partial u}{\partial t}=a \frac{\partial^{2} u}{\partial s^{2}}+F(u, v) \\ & \frac{\partial v}{\partial t}=a \frac{\partial^{2} v}{\partial s^{2}}+G(u, v) \end{aligned}$	$\begin{aligned} & \frac{\partial^{2} u_{1}}{\partial s^{2}}=u_{2} \\ & \frac{\partial^{2} v_{1}}{\partial s^{2}}=v_{2} \\ & \frac{\partial u_{1}}{\partial t}=a u_{2}+F\left(u_{1}, v_{1}\right) \\ & \frac{\partial v_{1}}{\partial t}=a v_{2}+G\left(u_{1}, v_{1}\right) \end{aligned}$

Construction of I

For many PDE based problems, $\Omega \subset \mathbb{R}^{p}$, where $p=2,3$, or 4 . It is vital to chose proper discretization I :

- \boldsymbol{I} should be dense in Ω, i.e., $\forall \boldsymbol{x} \in \Omega$, distance between \boldsymbol{x} and \boldsymbol{I} should be as small as possible. I should be space filling.
- From a computational point of view, $|\boldsymbol{I}|$ should be as small as possible.

In practical applications, it is a common situation that the observation data are collected ahead of data analysis. Thus, we assume that $\boldsymbol{\tau}$ is known and fixed. Method for constructing \boldsymbol{I} :

0 Construct a (large) candidate point set \mathcal{D} of size $N\left(N \gg n_{I}\right)$;
1 Start with $\boldsymbol{I}=\boldsymbol{\tau}$.
2 For $i=n+1, \ldots, n_{\boldsymbol{I}}$, repeat
2.1 Find $\boldsymbol{x}_{i}=\operatorname{argmax}_{\boldsymbol{x} \in \mathcal{D}} d(\boldsymbol{x}, \boldsymbol{I})$;
$2.2 \boldsymbol{I}=\boldsymbol{I} \cup \boldsymbol{x}_{i}$.
3 Output I.

Handling Initial/Boundary Conditions

Two types of Initial/Boundary Conditions (IBCs): Dirichlet IBCs and Non-Dirichlet IBCs. Dirichlet IBCs are given by the known value of PDE solution on the specific boundary regions, i.e.,

$$
\begin{equation*}
u(\boldsymbol{x})=b_{1}(\boldsymbol{x}), \boldsymbol{x} \in \Gamma_{1} . \tag{2}
\end{equation*}
$$

The initial conditions have the same form as the Dirichlet boundary condition, i.e., the known value of PDE solution at time $t=0$. The Non-Dirichlet boundary condition can be represented by a differential operator

$$
\begin{equation*}
\mathcal{B}_{\boldsymbol{x}, \boldsymbol{\theta}} u(\boldsymbol{x})=b_{2}(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta}), \boldsymbol{x} \in \Gamma_{2}, \tag{3}
\end{equation*}
$$

where \mathcal{B} is a differential operator with order $b>0$, which has the similar form with \mathcal{L} that we defined in previous sections.

Handling Initial/Boundary Conditions

For non-Dirichlet Boundary conditions, we define the comprehensive operator

$$
\mathcal{L} u(\boldsymbol{x})=\left\{\begin{array}{lr}
\mathcal{L} u(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \backslash \Gamma_{2} \\
\mathcal{B}_{\boldsymbol{x}, \boldsymbol{\theta}} u(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma_{2}
\end{array} .\right.
$$

Similarly, define the comprehensive source term

$$
f(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta})=\left\{\begin{array}{lr}
f(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta}), & \boldsymbol{x} \in \Omega \backslash \Gamma_{2} \\
b_{2}(\boldsymbol{x}, u(\boldsymbol{x}), \boldsymbol{\theta}), & \boldsymbol{x} \in \Gamma_{2}
\end{array} .\right.
$$

For non-Dirichlet boundary conditions, it is natural to incorporate the boundary information by including several properly chosen boundary points and replacing \mathcal{L} and f with their comprehensive forms.

Handling Initial/Boundary Conditions

For the Dirichlet boundary condition, we assume the value of PDE solution is known ahead on γ_{1} ahead of inference.

$$
\begin{align*}
& p_{\left.\boldsymbol{\Theta}, U(\boldsymbol{I}) \mid W_{\boldsymbol{I}}, Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}), U\left(\boldsymbol{I}_{1}\right)=u\left(\boldsymbol{I}_{1}\right)\right)}\left(\boldsymbol{\theta}, u(\boldsymbol{I}) \mid W_{\boldsymbol{I}}=0, Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}), U\left(\boldsymbol{I}_{1}\right)=b\left(\boldsymbol{I}_{1}\right)\right) \\
& \propto P\left(\boldsymbol{\Theta}=\boldsymbol{\theta}, U(\boldsymbol{I})=u(\boldsymbol{I}), W_{I}=0, Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}), U\left(\boldsymbol{I}_{1}\right)=b\left(\boldsymbol{I}_{1}\right)\right) \\
&= \pi_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \times P(U(\boldsymbol{I})=u(\boldsymbol{I})) \\
& \quad \times P(Y(\boldsymbol{\tau})=y(\boldsymbol{\tau}) \mid U(\boldsymbol{I})=u(\boldsymbol{I})) \times P\left(U\left(\boldsymbol{I}_{1}\right)=u\left(\boldsymbol{I}_{1}\right) \mid U(\boldsymbol{I})=u(\boldsymbol{I})\right) \\
& \quad \times P\left(W_{\boldsymbol{I}}=0 \mid U\left(\boldsymbol{I}_{1}\right)=u\left(\boldsymbol{I}_{1}\right), U(\boldsymbol{I})=u(\boldsymbol{I}), \boldsymbol{\Theta}=\boldsymbol{\theta}\right) \\
& \propto \exp \left\{-\frac{1}{2}\left[|\boldsymbol{I}| \log (2 \pi)+\log (|C|)+\|u(\boldsymbol{I})-\mu(\boldsymbol{I})\|_{C^{-1}}\right.\right. \\
& \quad+n \log \left(2 \pi \sigma_{e}^{2}\right)+\|u(\boldsymbol{\tau})-y(\boldsymbol{\tau})\|_{\sigma_{e}^{-2}}+\left\|m\left(\boldsymbol{I}_{1}\right)-y\left(\boldsymbol{I}_{1}\right)\right\|_{C_{b}^{-1}} \\
&\left.\left.\quad+|\boldsymbol{I}| \log \left(2 \pi \sigma_{u}^{2}\right)+\log |K|+\|f(\boldsymbol{I}, u(\boldsymbol{I}), \boldsymbol{\theta})-\mathcal{L} \mu(\boldsymbol{I})-m\{u(\boldsymbol{I})-\mu(\boldsymbol{I})\}\|_{K_{b}^{-1}}\right]\right\}, \tag{4}
\end{align*}
$$

where $C_{b}=\mathcal{K}\left(\boldsymbol{I}_{1}, \boldsymbol{I}_{1}\right)-\mathcal{K}\left(\boldsymbol{I}_{1}, \boldsymbol{I}\right) \mathcal{K}(\boldsymbol{I}, \boldsymbol{I})^{-1} \mathcal{K}\left(\boldsymbol{I}, \boldsymbol{I}_{\mathbf{1}}\right)$,
$K_{b}=\mathcal{L} \mathcal{K} \mathcal{L}(\boldsymbol{I}, \boldsymbol{I})-\mathcal{L} \mathcal{K}\left(\boldsymbol{I}, \boldsymbol{I} \cup \boldsymbol{I}_{1}\right) \mathcal{K}\left(\boldsymbol{I} \cup \boldsymbol{I}_{1}, \boldsymbol{I} \cup \boldsymbol{I}_{1}\right)^{-1} \mathcal{K} \mathcal{L}\left(\boldsymbol{I} \cup \boldsymbol{I}_{1}, \boldsymbol{I}\right)$.

Dimensional Reduction for $U(I)$

- The parameter space is of dimension $l n_{\boldsymbol{I}}+d, l$ is the number of PDE components. Thus, when n_{I} is large, optimizing or sampling from posterior are challenging tasks.
- The Karhunen Loeve (KL) expansion to the GP $U(\boldsymbol{x})$ is given by

$$
U(\boldsymbol{x})=\sum_{i=1}^{\infty} Z_{i} \sqrt{\lambda_{i}} \psi_{i}(\boldsymbol{x})
$$

- $\sqrt{\lambda_{i}}$ are eigenvectors of kernel function of GP in decreasing order, we can choose an $M \in \mathbb{N}$ such that λ_{i} for $i>M$ are negligible, then the GP $U(\boldsymbol{x})$ is approximated by

$$
U(\boldsymbol{x}) \approx \sum_{i=1}^{M} Z_{i} \sqrt{\lambda_{i}} \psi_{i}(\boldsymbol{x})
$$

M is chosen such that $\sum_{i=1}^{M} \lambda_{i} / \sum_{i=1}^{n} \lambda_{i} \geq 99.99 \%$.

- $U(\boldsymbol{x})$ is parametrized by $\left(Z_{1}, Z_{2}, \ldots, Z_{M}\right)$.

Summary of PIGPI Procedure

Algorithm 1 Posterior Inference for PIGPI Procedure

1: Input data $\mathcal{D}=\left\{\left(y_{i}, \boldsymbol{x}_{i}\right), i=1, \ldots, n\right\}$, selecting \boldsymbol{I} using method proposed in previous slides.
2: Train Gaussian process model based on \mathcal{D}, obtain the posterior density.
3: Otimize the posterior density to obtain MAP estimation of $u(\boldsymbol{I})$ and $\boldsymbol{\theta}$.
4: Take MAP estimation obtained from Step 3 as an initial state. Draw posterior sample for $u(\boldsymbol{I}), \boldsymbol{\theta}$ and σ_{e}^{2} using HMC algorithm.

Note: Normal approximation can be used as a fast approximation of posterior uncertainty quantification.

Numerical Illustration - Preparation

Evaluation metrics

- Root means square error (RMSE) of MAP of $\boldsymbol{\theta}$: Evaluate the accuracy of parameter estimation.
- RMSE of MAP of $u\left(\boldsymbol{x}_{\boldsymbol{I}}\right)$: Evaluate the accuracy of PDE solution estimation.
- Computation time for MAP optimization: Evaluate the efficiency of alternative methods.

Numerical Illustration - Preparation

Proposed methods

- PIGPI (with or without augmentation)

Benchmark methods

- Maximum likelihood estimation (MLE): Gold standard, but needs a large number of evaluations of PDE solution.
- Two-Stage method (TSM) (Rai and Tripathi,2019).
- Automated PDE identification (API) method (Liu et. al 2021).
- Methods (BM and PC) proposed by Xun et. al.(2013)
- Bayesian optimization method (BOM), a.k.a. Expected Improvement (EI) (Jones et. al., 1998).

Rai P.K \& Tripathi, S. (2019) Gaussian process for estimating parameters of partial differential equations918 and its application to the Richards equation, Stochastic Environmental Research and Risk Assessment,33, pp. 1629-1649.
Xun, X., Cao, J., Mallick, B., Maity, A., \& Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical Association, 108(503), 1009-1020.
Liu, R., Bianco, M. J., \& Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the Acoustical Society of America, 150(4), 2364-2374.
Jones, D. R., Schonlau, M., \& Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4), 455-492.

Example2-Long-Range Infrared Light Detection and Ranging

The equation is given by

$$
\frac{\partial u(t, s)}{\partial t}-\theta_{D} \frac{\partial^{2} u(t, s)}{\partial s^{2}}-\theta_{S} \frac{\partial u(t, s)}{\partial s}=\theta_{A} u(t, s), t \in[0,20], s \in[0,40]
$$

- The boundary condition is given by $u(t, 0)=0$ and initial condition is

$$
u(0, s)=\left\{1+0.1 *(20-s)^{2}\right\}^{-1}
$$

- Observation: $y\left(\boldsymbol{x}_{i}\right)=u\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{0}\right)+\varepsilon_{i}, i=1, \ldots, n$, where $\varepsilon_{i} \sim N\left(0, \sigma_{e}\right)$. The true value for $\boldsymbol{\theta}_{0}$ is $(1,0.1,0.1)$.
- θ_{D} and θ_{S} are involved in the linear PDE operator.;
- This example can be found in the JASA paper:

Xun, X., Cao, J., Mallick, B., Maity, A., \& Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical Association, 108(503), 1009-1020.

Example-Long-Range Infrared Light Detection and Ranging

The augmented PDE for LIDAR equation that satisfies the "lowest order of derivative" principal is given as follows,

$$
\begin{aligned}
& \frac{\partial u_{1}(t, s)}{\partial s}=u_{2}(t, s) \\
& \frac{\partial u_{2}(t, s)}{\partial s}=u_{3}(t, s) \\
& \frac{\partial u_{1}(t, s)}{\partial t}=\theta_{D} u_{3}(t, s)+\theta_{S} u_{2}(t, s)+\theta_{A} u_{1}(t, s) .
\end{aligned}
$$

Example-Long-Range Infrared Light Detection and Ranging

- Both PIGPI with augmentation and PIGPI without augmentation can be applied.
- Use Adam algorithm, 2500 iterations for each method.

Figure 1: Comparison of computational time

Example-Long-Range Infrared Light Detection and Ranging

- Comparing with methods proposed in the paper:

Xun, X., Cao, J., Mallick, B., Maity, A., \& Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical Association, 108(503), 1009-1020.

- Two methods are proposed in this paper, the Bayesian method (BM) and the parameter cascading method (PC).
- We compare with BM, PC, and TSM.
- $n=800$, two cases for variance of random error $\sigma_{e}=0.02$ or $\sigma_{e}=0.05$.

Example-Long-Range Infrared Light Detection and Ranging

		$\sigma_{e}=0.02$			$\sigma_{e}=0.05$		
		θ_{1}	θ_{2}	θ_{3}	θ_{1}	θ_{2}	θ_{3}
Bias$\times 10^{-3}$	PIGPI	-14.00	-0.20	-0.12	-27.35	-0.34	-0.29
	BM	-16.50	-0.40	-0.20	-35.60	1.00	0.60
	PC	-29.70	-0.10	-0.30	-55.90	-0.20	-0.50
	TSM	-105.33	-2.69	-1.28	-140.12	-4.05	-2.12
$\begin{aligned} & \text { SD } \\ & \times 10^{-3} \end{aligned}$	PIGPI	9.37	1.63	0.21	20.31	3.74	0.48
	BM	9.10	1.60	0.20	22.20	3.80	0.50
	PC	24.90	3.80	0.50	40.50	6.20	0.80
	TSM	29.42	3.82	0.52	49.00	7.29	1.03
$\begin{aligned} & \text { RMSE } \\ & \times 10^{-3} \end{aligned}$	PIGPI	16.85	1.64	0.24	34.06	3.75	0.56
	BM	18.81	1.66	0.27	42.00	3.90	1.00
	PC	38.96	3.75	0.54	69.10	6.20	2.20
	TSM	109.35	4.67	1.38	148.43	8.34	2.36
$\begin{aligned} & \text { CR } \\ & \% \end{aligned}$	PIGPI	98.6	100	99.2	79.7	95.9	92.2
	BM	93.9	99.9	98.8	74	97.8	93.5
	PC	84.3	96.7	94.9	78.1	96.5	93.8

Example-Burger's Equation

We consider the viscous Burgers' equation given by

$$
\frac{\partial u}{\partial t}-\theta_{1} u \frac{\partial u}{\partial s}+\theta_{2} \frac{\partial^{2} u}{\partial s^{2}}=0, s \in[0,1], t \in[0,0.1]
$$

where $\theta_{2}>0$ is the viscosity. Burgers' equation is a nonlinear equation. The boundary conditions and initial conditions are given by

$$
\begin{aligned}
\frac{\partial u(t, 0)}{\partial s} & =\frac{\partial u(t, 1)}{\partial s}=0, & t \in[0,0.1] \\
u(0, s) & =\exp \left\{-100(s-0.5)^{2}\right\}, & s \in[0,1]
\end{aligned}
$$

- Compared with automated PDE identification method (API method).
- The method is proposed in the paper:

Liu, R., Bianco, M. J., and Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the Acoustical Society of America, 150(4):2364-2374

Example-Burger's Equation

		$\sigma_{e}=0.001$		$\sigma_{e}=0.01$	
		θ_{1}	θ_{2}	θ_{1}	θ_{2}
Bias$\times 10^{-3}$	PIGPI w IBC	-4.60	-0.05	-15.49	-0.27
	PIGPI w/o IBC	-3.15	-0.19	-23.24	-1.60
	API	10.76	-6.69	108.59	85.97
	TSM	-10.44	-2.19	-50.61	-8.55
$\begin{aligned} & \text { SD } \\ & \times 10^{-3} \end{aligned}$	PIGPI w IBC	2.49	0.19	11.31	0.79
	PIGPI w/o IBC	2.84	0.22	19.21	1.34
	API	6.15	0.51	299.73	258.97
	TSM	4.01	0.35	27.24	2.72
$\begin{aligned} & \text { RMSE } \\ & \times 10^{-3} \end{aligned}$	PIGPI w IBC	5.23	0.20	19.18	0.83
	PIGPI w/o IBC	4.24	0.29	30.15	2.09
	API	12.39	6.71	318.66	272.74
	TSM	11.18	2.22	57.46	8.97
$\begin{aligned} & \mathrm{CR} \\ & \% \end{aligned}$	PIGPI w IBC	100	100	82	96.2
	PIGPI w/o IBC	100	100	81.4	81.5

Example-Burger's Equation

- The improvement of taking advantage of initial/boundary conditions;
- The boundary conditions are helpful to improve the estimation of parameters (Subplot 1).
- The boundary conditions can significantly reduce the error of posterior inference of PDE solution (Subplot 2).

Figure 2: Comparison of MAPEs, PIGPI without boundary conditions v.s. PIGPI with boundary conditions

Example4-Reaction-Diffusion Equation

- We consider a coupled PDE system, i.e., reaction-diffusion equation. The PDE system is given by

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\theta_{1} \nabla_{s}^{2} u(\boldsymbol{x})+\theta_{3}-\left(\theta_{2}+1\right) u+u^{2} v \\
& \frac{\partial v}{\partial t}=\theta_{1} \nabla_{s}^{2} v(\boldsymbol{x})+\theta_{2} u-u^{2} v
\end{aligned}
$$

with boundary conditions
$\boldsymbol{n} \cdot \nabla_{s} u=0, \boldsymbol{n} \cdot \nabla_{s} v=0, t \times \boldsymbol{s} \in[0,1] \times\{[0,1] \times\{0,1\} \cup\{0,1\} \times[0,1]\}$,
and initial conditions $u(0, s)=2+0.25 s_{2}, v(0, s)=1+0.8 s_{1}, s \in[0,1]^{2}$.

- The task is to estimate the parameters $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ from the observational data.
- It can be seen that the PDE has two components. Moreover, parameter θ_{1} is involved into the PDE operator.

Example-Reaction-Diffusion Equation

Now we consider a challenging case:

- Assume that we can only observe one component u, i.e., v is censored in physical experiment;
- This is very common in physics and engineering, e.g., one of the components are expensive to measure.
- PIGPI can be applied to censored observation cases.

Example-Reaction-Diffusion Equation

Table 1: The RMSE of parameter inference obtained by MLE, PIGPI and BOM. The average computational time for parameter inference using MLE, PIGPI, TSM and BOM. The proposed method is emphasized with bold face font.

	n	30	60	120	240
$\begin{aligned} & \theta_{1} \\ & \times 10^{-3} \end{aligned}$	MLE	0.2	0.2	0.2	0.1
	PIGPI	49.3	7.0	5.2	3.8
	BOM	1760.3	1208.9	464.8	1385.3
$\begin{aligned} & \theta_{2} \\ & \times 10^{-3} \end{aligned}$	MLE	0.8	0.6	0.4	0.3
	PIGPI	17.9	3.7	2.5	2.4
	BOM	272.3	271.9	275.1	269.6
$\begin{aligned} & \theta_{3} \\ & \times 10^{-3} \end{aligned}$	MLE	1.3	1.1	0.8	0.6
	PIGPI	321.2	64.9	36.5	31.9
	BOM	499.2	487.7	504.2	488.5
Computational Time (sec)	MLE	43505.0	41217.6	45458.9	49449.9
	PIGPI	469.1	465.4	470.2	471.8
	BOM	1354.0	1358.9	1369.1	1358.4

Example-Reaction-Diffusion Equation

- Assume that v is censored.
- Comparing L_{2} errors of parameter estimation.
- Two-Stage method is not applicable.

Table 2: The mean of RMSE of PDE solution estimation, v is censored. The MAPG-PDE are able to reconstruct the fully censored components. The proposed method is emphasized with bold face font.

n		30	60	120	240
u					
	MLE	0.23	0.18	0.13	0.10
	PIGPI	$\mathbf{1 0 . 3 5}$	$\mathbf{2 . 8 1}$	$\mathbf{1 . 5 4}$	$\mathbf{1 . 2 5}$
	BOM	58.55	61.56	58.69	60.86
v (censored)	MLE	0.34	0.31	0.21	0.16
	PIGPI	$\mathbf{1 5 9 . 8 1}$	$\mathbf{2 6 . 9 5}$	$\mathbf{1 1 . 7 8}$	$\mathbf{8 . 5 7}$
	BOM	92.12	101.70	102.14	97.15

Summary

Our works and contributions:

- We propose a new method for parameter inference involves complex PDE models, called manifold-constrained Gaussian process inference for PDE parameter (PIGPI).
- The proposed method bypasses the requirement of time-consuming PDE solver such as the finite element method.
- Our method is flexible to Nonlinear PDE and PDE systems with unobserved components.
- Our method is scalable to large data set:
- We present a method for determining the discretization set for the input variable of the PDE solution.
- We propose a dimensional reduction method that is helpful for reducing the computational complexity when the discretization set is large.
- Our method is able to incorporate initial/boundary conditions.
- Numerical examples are employed to illustrate the performance of the proposed method.

Q \& A

Thank You!

zhaohui.li@gatech.edu

