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Introduction

Partial differential equations (PDEs) are widely employed to describe the physical and
engineering phenomenon.

Some parameters, which are determined by material properties, engineering properties,
etc., are very important.

In real-world applications, directly measuring these parameters is sometimes impossible.

Estimating these parameters from experimental data is an important task, known as
model calibration, inverse problems, etc.

In this work, we focus on inferring unknown parameters in complex PDE models from
sparse, noisy observation data.
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Motivating Example

The long-range infrared light detection and ranging (LIDAR) equation:

∂u(t, s)

∂t
− θS

∂2u(t, s)

∂s2
− θD

∂u(t, s)

∂s
= θAu(t, s), 0 ≤ t ≤ 20, 0 ≤ s ≤ 40,

with specified boundary and initial conditions.

Objective: estimate the parameters θ = (θS , θD, θA) from the observation data
y(xi) = u(xi) + ε, where xi = (ti, si), εi ∼ N(0, σ2e), i = 1, . . . , n are random errors.
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Problem Formulation

Start with a semi-linear partial differential equation (PDE):

Lu(x) = f(x, u(x),θ),

where x = (x1, . . . , xp), Lu(x) denotes a linear differential operator of order a:

Lu(x) =
∑
αi∈A

ci(θ,x)
∂|αi|u(x)

∂αi1x1 · · · ∂αipxp
,

where αi = (αi1, . . . , αip), αij = 0, 1, 2, . . . , and |αi| =
∑p

j=1 αij > 0. A = {αi, i = 1, ..., l}.
The order of L is defined by a = maxi |αi|.
For example, in the LIDAR equation,

Lu(x) = ∂u(x)
∂t − θS

∂2u(x)
∂s2 − θD

∂u(x)
∂s , f(x, u(x),θ) = θAu(x).

c1 = 1, c2 = −θ1, c3 = −θ2, α1 = (1, 0),α2 = (0, 2),α3 = (0, 1).
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Basic Idea

The task is to estimate the parameters θ from the observation data
y(xi) = u(xi) + εi, i = 1, . . . , n. Let τ = {xi, i = 1, . . . , n}.
Assign a Gaussian process (GP) prior on u(x) denoted by U(x) ∼ GP(µ, σ2K(·, ·)).
To incorporate PDE constraints into GP prior, define a random variable W quantifying
the difference between GP U(x) and the PDE structure with given θ, i.e.,

W = sup
x∈Ω

∥LU(x)− f(x, U(x),θ)∥.

W = 0 ⇔ U is the solution of PDE with specified parameter θ.
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Basic Idea

W is not computable!

Approximate W by finite discretization on the set I = {x1, . . . ,xnI} ⊂ Ω such that
τ ⊂ I ⊂ Ω and similarly define WI as

WI = sup
x∈I

∥LU(x)− f(x, U(x),θ)∥.

As I getting denser and denser, we expect that WI provides a good approximation to W ,
this needs

1 Proper smoothness condition on the function space H (PDE solution provides good
smoothness properties.).

2 I should be space-filling in Ω, i.e., ∀x ∈ Ω, distance between x and I should be as small as
possible. I should be space filling.

3 From a computational point of view, |I| should be as small as possible.
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Basic Idea

Important properties of GP:

Assume constant variance σ2, K(x,x′) has enough degree of smoothness,
i.e.LxLx′K(x,x′) exists and continuous.

Then for given parameter θ, LU(x) is also GP: LxU(x) ∼ GP(Lxµ(x),LxLx′K(x,x′)).

Correlation: corr(LxU(x), U(x′)) = LxK(x,x′).

We employ the product Matérn kernel:

K(x,x′) = ϕ1
∏p

i=1
21−ν

Γ(ν) (
√
2ν di

ϕ2i
)νBν(

√
2ν di

ϕ2i
), where di = |xi − x′i|, i = 1, . . . , p, Γ:

Gamma function, Bν : the modified Bessel function of the second kind.

Degree of freedom ν is set to be 2a+ δ to ensure that the 2a-th order derivatives of the
kernel with respect to any coordinate xi exists, where δ is a small positive number.
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Basic Idea

Treating WI as an approximation of W and assigning a noninformative prior for θ, the
posterior is immediately obtained

pΘ,U(I)|WI ,Y (τ )=y(τ ) (θ, u(I)|WI = 0, Y (τ ) = y(τ ))

∝πΘ (θ)× P (U(I) = u(I)|Θ = θ)

× P (Y (τ ) = y(τ )|U(I) = u(I),Θ = θ)

× P (WI = 0|Y (τ ) = y(τ ), U(I) = u(I),Θ = θ) .

∝ exp
{
− 1

2

[
log(|C|) + ∥u(I)− µ∥C−1

+ ∥u(τ )− y(τ )∥σ−2
e

+ log |K|+ ∥f(I, u(I),θ)−m{u(I)− µ}∥K−1

]}
.

Posterior inference for both θ and u(I) can be done by sampling from/optimizing this
(unnormalized) posterior density.

The method is called PDE-Informed Gaussian Process Inference (PIGPI).
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Calculation of GP components:
C = K(I, I)

m = LK(I, I)K(I, I)−1

K = LKL(I, I)− LK(I, I)K(I, I)−1KL(I, I)
,

K(I, I): an nI × nI matrix with (i, j) element K(xi,xj);

LK(I, I), : an nI × nI matrix with (i, j) element Lx(K(xi,xj));

KL(I, I) : an nI × nI matrix with (i, j) element Lx′(K(xi,xj));

LKL(I, I): an nI × nI matrix with (i, j) element Lx(Lx′(K(xi,xj)));
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Handling Non-linear and Parameter-dependent Operators

Two limitations of original PIGPI:

Computationally Expensive for Parameter Dependent Operator: When Lθ
x depends

on θ, the updating of θ requires the updating of LKL and K−1.

Non-Flexible to Non-Linear Operator: For a non-linear PDE A(u,x) = f , A(U,x)
may not be Gaussian.

To solve these problems, we propose a novel method that

can decouple the dependence between parameter θ and covariance matrix K .

can handle nonlinear PDEs.
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Handling Non-linear and Parameter-dependent Operators

A nonlinear PDE, Burger’s equation:

∂u

∂t
(x)− θ1u(x)

∂u

∂s
(x) + θ2

∂2u

∂s2
(x) = 0.

The PDE operator A(u,x) = ∂u
∂t − θ1u

∂u
∂s + θ2

∂2u
∂s2

is

Nonlinear: u(x)∂u∂s (x);

Parameter-operator dependent: −θ1u∂u
∂s + θ2

∂2u
∂s2

.
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Handling Non-linear and Parameter-dependent Operators

Burger’s equation,
∂u

∂t
(x) = θ1u(x)

∂u

∂s
(x)− θ2

∂2u

∂s2
(x).

Define an equivalent PDE system,
∂u
∂s (x) = u2(x),
∂u2
∂s (x) = u3(x),
∂u
∂t (x) = θ1u(x)u2(x)− θ2u3(x),

(1)

This system of PDEs is called augmented PDE.

The augmented PDE system has a linear, parameter independent operator.

PDE still nonlinear (Of course).
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Handling Non-linear and Parameter-dependent Operators

Properties of augmented PDE:

Equivalence:
▶ Classical solution of original PDE can generalize to a classical solution of augmented PDE;
▶ Classical solution of augmented PDE is also a classical solution of original PDE;

Decoupling PDE operator and parameter: Augmented PDE operator (LFH) is
independent of parameters;

Linearity: Augmented PDE operator is linear.

It is natural to apply the proposed PIGPI to the augmented PDE.
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Discussion - Non-uniqueness of Augmentation

Lowest degree of derivative (LDD) principal:

The augmentation is not unique.

Another augmentation for Burger’s equation:
∂u
∂s (x) = u2(x),
∂2u
∂s2

(x) = u3(x),
∂u
∂t (x) = θ1u(x)u2(x)− θ2u3(x),

Our recommendation: (1).
Reasons:

PDE (1) is a 1-order PDE while the second one is 2-order PDE. We prefer to use a
lower-order PDE.

PDE (1) produces a simpler covariance matrix K.
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Handling Non-linear and Parameter-dependent Operators

Name Original Form Augmented Form

Fisher’s Equation ∂u
∂t −D ∂2u

∂s2 = ru(1− u)
∂2u1

∂s2 = u2
∂u1

∂t = Du2 + ru1(1− u1)

Telegraph Equation ∂2u
∂t2 + k ∂u

∂t = a2 ∂2u
∂x2 + bu

∂u1

∂t = u2
∂2u1

∂x2 = u3
∂u2

∂t = a2u3 + bu1 − ku2

Nonlinear Heat Equa-
tion

∂u
∂t = a ∂

∂s

(
eλu ∂u

∂s

)
+ b+ c1e

βu+
c2e

γu

∂u1

∂s = u2
∂u2

∂s = u3
∂u1

∂t = aλeλu1u22 + aeλu1u3
+b+ c1e

βu1 + c2e
γu1

Generalized Ko-
rteweg–de Vries Equa-
tion

∂u
∂t + ∂3u

∂s3 + g(u)∂u∂s = 0
∂u1

∂s = u2
∂u1

∂t + ∂3u2

∂s2 = g(u1)u2

Reaction-Diffusion Sys-
tem

∂u
∂t = a∂2u

∂s2 + F (u, v),
∂v
∂t = a∂2v

∂s2 +G(u, v)

∂2u1

∂s2 = u2
∂2v1
∂s2 = v2
∂u1

∂t = au2 + F (u1, v1)
∂v1
∂t = av2 +G(u1, v1)

Zhaohui Li (Georgia Tech) PIGPI June 8, 2023 16 / 33



Imperfect Augmentation Idea - Unable to Handle Arbitrary PDEs

Example (Eikonal Equation)

To end this subsection, we give an example to which our framework is not applicable. The
PDE is one kind of the well-known Eikonal equation,

(
∂u

∂x1
)2 + (

∂u

∂x2
)2 = f(u,x,θ), (2)

where f(u,x,θ) is a positive valued function. By simple algebra, we get two PDEs, i.e.,

∂u

∂x1
=

√
f(u,x, θ)− (

∂u

∂x2
)2,

∂u

∂x1
= −

√
f(u,x, θ)− (

∂u

∂x2
)2,

whose solutions are both solutions of (2). Thus, without additional information (eg. u is a
function increasing with x1), there is no unique augmentation form that is equivalent to (2).
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Construction of I

For many PDE based problems, Ω ⊂ Rp, where p = 2, 3, or 4. It is vital to chose proper
discretization I:

o I should be space filling in Ω.

o From a computational point of view, |I| should be as small as possible.

In practical applications, it is a common situation that the observation data are collected ahead
of data analysis. Thus, we assume that τ is known and fixed. Method for constructing I:

0 Construct a (large) candidate point set D of size N (N >> nI);

1 Start with I = τ .

2 For i = n+ 1, . . . , nI , repeat

2.1 Find xi = argmaxx∈Dd(x, I);
2.2 I = I ∪ xi.

3 Output I.
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Handling Initial/Boundary Conditions

Two types of Initial/Boundary Conditions (IBCs): Dirichlet IBCs and Non-Dirichlet IBCs.

Dirichlet IBCs: known value of PDE solution on the specific boundary regions, i.e.,

u(x) = b1(x),x ∈ Γ1; (3)

The initial conditions are typically Dirichlet types;

Non-Dirichlet IBCs
Bx,θu(x) = b2(x, u(x),θ),x ∈ Γ2, (4)

where B is a differential operator with order b > 0, which has the similar form with L.
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Handling Initial/Boundary Conditions

For non-Dirichlet IBCs, we define the comprehensive operator

Lu(x) =

{
Lu(x), x ∈ Ω\Γ2

Bx,θu(x), x ∈ Γ2
.

Similarly, define the comprehensive source term

f(x, u(x),θ) =

{
f(x, u(x),θ), x ∈ Ω\Γ2

b2(x, u(x),θ), x ∈ Γ2
.

For non-Dirichlet IBCs, it is natural to incorporate the boundary information by including
several properly chosen boundary points and replacing L and f with their comprehensive forms.
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Handling Initial/Boundary Conditions

Dirichlet IBCs is treated as a set of noiseless observation on the boundary: I1 is the
discretization for boundary Γ1.

pΘ,U(I)|WI ,Y (τ )=y(τ ),U(I1)=u(I1)) (θ, u(I)|WI = 0, Y (τ ) = y(τ ), U(I1) = b(I1))

∝P (Θ = θ, U(I) = u(I),WI = 0, Y (τ ) = y(τ ), U(I1) = b(I1))

=πΘ (θ)× P (U(I) = u(I))

× P (Y (τ ) = y(τ )|U(I) = u(I))× P (U(I1) = u(I1)|U(I) = u(I))

× P (WI = 0|U(I1) = u(I1), U(I) = u(I),Θ = θ) .

∝ exp
{
− 1

2

[
|I| log(2π) + log(|C|) + ∥u(I)− µ(I)∥C−1

+ n log(2πσ2e) + ∥u(τ )− y(τ )∥σ−2
e

+ ∥m(I1)− y(I1)∥C−1
b

+ |I| log(2πσ2u) + log |K|+ ∥f(I, u(I),θ)− Lµ(I)−m{u(I)− µ(I)}∥K−1
b

]}
, (5)

where Cb = K(I1, I1)−K(I1, I)K(I, I)−1K(I, I1),
Kb = LKL(I, I)− LK(I, I ∪ I1)K(I ∪ I1, I ∪ I1)

−1KL(I ∪ I1, I).
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Dimensional Reduction for U(I)

The parameter space is of dimension lnI + d, l is the number of PDE components. Thus,
when nI is large, optimizing or sampling from posterior are challenging tasks.

The Karhunen Loeve (KL) expansion to the GP U(x) is given by

U(x) =

∞∑
i=1

Zi

√
λiψi(x),

√
λi are eigenvectors of kernel function of GP in decreasing order, we can choose an

M ∈ N such that λi for i > M are negligible, then the GP U(x) is approximated by

U(x) ≈
M∑
i=1

Zi

√
λiψi(x).

M is chosen such that
∑M

i=1 λi/
∑nI

i=1 λi ≥ 99.99%.

U(x) is parametrized by (Z1, Z2, . . . , ZM ).
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Numerical Illustration - Preparation

Evaluation metrics

Root means square error (RMSE) or mean absolute percentage error(MAPE) of MAP of
θ: Evaluate the accuracy of parameter estimation.

RMSE of MAP of u(xI): Evaluate the accuracy of PDE solution estimation.

Computation time for MAP optimization: Evaluate the efficiency of alternative methods.

Benchmark methods

Two-Stage method (TSM) (Rai and Tripathi,2019).

Automated PDE identification (API) method (Liu et. al 2021).

Methods (BM and PC) proposed by Xun et. al.(2013)
Rai P.K & Tripathi, S. (2019) Gaussian process for estimating parameters of partial differential equations918 and its application to the Richards equation,
Stochastic Environmental Research and Risk Assessment,33, pp. 1629–1649.
Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical
Association, 108(503), 1009-1020.
Liu, R., Bianco, M. J., & Gerstoft, P. (2021). Automated partial differential equation identification. The Journal of the Acoustical Society of America, 150(4),
2364-2374.
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Example-Long-Range Infrared Light Detection and Ranging

Revisit Motivating Example:

∂u(t, s)

∂t
− θD

∂2u(t, s)

∂s2
− θS

∂u(t, s)

∂s
= θAu(t, s), t ∈ [0, 20], s ∈ [0, 40].

IBCs: u(t, 0) = u(t, 40) = 0; u(0, s) = (1 + 0.1 ∗ (20− s)2)−1.

Observation: y(xi) = u(xi,θ0) + εi, i = 1, . . . , n, where εi ∼ N(0, σe).

The true value (θD, θS , θA) = (1, 0.1, 0.1).

Linear PDE operator depends on θD, θS .
▶ PIGPI without augmentation
▶ PIGPI with augmentation
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Example-Long-Range Infrared Light Detection and Ranging

Augmented PDE satisfies LOD principal:

∂u1(t, s)

∂s
= u2(t, s),

∂u2(t, s)

∂s
= u3(t, s),

∂u1(t, s)

∂t
= θDu3(t, s) + θSu2(t, s) + θAu1(t, s).
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Example-Long-Range Infrared Light Detection and Ranging
Both PIGPI with augmentation and PIGPI without augmentation can be applied.

Use Adam algorithm, 2500 iterations for each method.
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Figure 1: Comparison of computational time
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Example-Long-Range Infrared Light Detection and Ranging

Two methods are proposed in this paper, the Bayesian method (BM) and the parameter
cascading method (PC): Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013).
Parameter estimation of partial differential equation models. Journal of the American
Statistical Association, 108(503), 1009-1020.

We compare with BM, PC, and TSM(Two-stage method).

n = 800, two cases for variance of random error σe = 0.02 or σe = 0.05.
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Example-Long-Range Infrared Light Detection and Ranging

σe = 0.02 σe = 0.05

θ1 θ2 θ3 θ1 θ2 θ3

Bias
×10−3

PIGPI -14.00 -0.20 -0.12 -27.35 -0.34 -0.29
BM -16.50 -0.40 -0.20 -35.60 1.00 0.60
PC -29.70 -0.10 -0.30 -55.90 -0.20 -0.50
TSM -105.33 -2.69 -1.28 -140.12 -4.05 -2.12

SD
×10−3

PIGPI 9.37 1.63 0.21 20.31 3.74 0.48
BM 9.10 1.60 0.20 22.20 3.80 0.50
PC 24.90 3.80 0.50 40.50 6.20 0.80
TSM 29.42 3.82 0.52 49.00 7.29 1.03

RMSE
×10−3

PIGPI 16.85 1.64 0.24 34.06 3.75 0.56
BM 18.81 1.66 0.27 42.00 3.90 1.00
PC 38.96 3.75 0.54 69.10 6.20 2.20
TSM 109.35 4.67 1.38 148.43 8.34 2.36

CR
%

PIGPI 98.6 100 99.2 79.7 95.9 92.2
BM 93.9 99.9 98.8 74 97.8 93.5
PC 84.3 96.7 94.9 78.1 96.5 93.8
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Example-Burger’s Equation

Revisit Nonlinear Burgers’ equation:

∂u

∂t
− θ1u

∂u

∂s
+ θ2

∂2u

∂s2
= 0, s ∈ [0, 1], t ∈ [0, 0.1],

IBCs:

∂u(t, 0)

∂s
=
∂u(t, 1)

∂s
= 0, t ∈ [0, 0.1]

u(0, s) = exp{−100(s− 0.5)2}, s ∈ [0, 1]

Compared with automated PDE identification method (API):
Liu, R., Bianco, M. J., and Gerstoft, P. (2021). Automated partial differential equation
identification. The Journal of the Acoustical Society of America, 150(4):2364–2374
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Example-Burger’s Equation

σe = 0.001 σe = 0.01
θ1 θ2 θ1 θ2

Bias
×10−3

PIGPI w IBC -4.60 -0.05 -15.49 -0.27
PIGPI w/o IBC -3.15 -0.19 -23.24 -1.60
API 10.76 -6.69 108.59 85.97
TSM -10.44 -2.19 -50.61 -8.55

SD
×10−3

PIGPI w IBC 2.49 0.19 11.31 0.79
PIGPI w/o IBC 2.84 0.22 19.21 1.34
API 6.15 0.51 299.73 258.97
TSM 4.01 0.35 27.24 2.72

RMSE
×10−3

PIGPI w IBC 5.23 0.20 19.18 0.83
PIGPI w/o IBC 4.24 0.29 30.15 2.09
API 12.39 6.71 318.66 272.74
TSM 11.18 2.22 57.46 8.97

CR
%

PIGPI w IBC 100 100 82 96.2
PIGPI w/o IBC 100 100 81.4 81.5

Zhaohui Li (Georgia Tech) PIGPI June 8, 2023 30 / 33



Example-Burger’s Equation

The improvement of taking advantage of IBCs:

IBCs are helpful to improve the estimation of parameters (Left).

IBCs can significantly reduce the error of posterior inference of PDE solution (Right).

Without Boundary Condition With Boundary Condition

0

0.05

0.1

0.15

Without Boundary Condition With Boundary Condition
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 2: Comparison of MAPEs, PIGPI without IBCs v.s. PIGPI with IBCs
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Summary

We propose a new method for parameter inference involves complex PDE models, called
PDE-Informed Gaussian Process Inference (PIGPI):

▶ Bypasses the requirement of a time-consuming PDE solver such as the finite
element method.

▶ Flexible to Nonlinear PDE and PDE systems with unobserved components.
▶ Scalable to large data set:

⋆ Dimensional reduction method that is helpful for reducing the computational complexity when
the discretization set is large.

▶ Ability to incorporate initial/boundary conditions.
▶ Numerical examples are employed to illustrate the performance of the proposed method.
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Q & A

Thank You!

zhaohui.li@gatech.edu
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