Robust Bayesian Regression via Hard Thresholding

Zhaohui Li

Academy of Mathematics and System Sciences, Institute of Systems Science

A joint work with Zheyi Fan and Qingpei Hu

Zhaohui Li (AMSS-ISS) Robust Bayesian Regression 1/35



@ Introduction and Motivation
© Robust Bayesian Regression via Hard Thresholding
© Satellite Solar Cell Data Reconstruction Algorithm

© Result

© Conclusion

Zhaohui Li (AMSS-ISS) Robust Bayesian Regression



@ Introduction and Motivation

Zhaohui Li (AMSS-ISS) Robust Bayesian Regression

3/35



Introduction

solar energy

@ Solar array

electricity

@ Solar array is a very important component of satellite, which is the
key factor for satellite to work normally.

@ The solar array provides power for the entire satellite platform, so the
reliability of the solar array is a very important research topic.

@ By analyzing the on orbit data of the solar array, we can obtain
various reliability indexes and predict the life of solar array.
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Problem

The power of solar cells on LEO satellite

The power of solar cell on LEO satellites
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Data characteristics
@ The data is periodic and has an overall change trend.
@ The total amount of data is large, about 20 million in total.

@ The outliers account for a high proportion and their distribution is
rather complex, so it is difficult to deal with them by common
denoising algorithms.

Our Goals: To reconstruct the data and extract the overall change trend.
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The weaknesses of previous Methods

Low breakdown point
o (McWilliams et al. 2014): o = O(1//d).
o (Prasad et al. 2018): a = O(1/log d).
Can only resist OAA (Oblivious adversarial attack)
o (Bhatia et al. 2017): proposed the first efficient consistent estimator.
o (Suggala et al. 2019): « is close to 1 as n — oc.
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The weaknesses of previous Methods

Can resist AAA (Adaptive adversarial attack)

@ Have a low breakdown point
o (Cherapanamje et al. 2020)(Jambulapat et al.2021)(Pensia et al. 2020)

o (Bhatia et al. 2015): only in noiseless case.
o (Diakonikolas et al. 2019): requires accurate information of data

covariance.

How to increase the breakdown point of robust regression under AAA?
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Motivation

The power of solar cell on LEO satellites The power of solar cell on LEO satellites
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@ We know the distribution pattern of normal data. Can we use this
information to reconstruct data?

@ In the reconstructed data, we can select a representative point in each
period to get the overall data trend.
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Basic aspects in robust regression

Given a data matrix X = [x1, ..., x,] € R%™ its corresponding response
vector y € R™, and a certain number k which represents the number of
corruptions in the data, the problem of RLSR can be described as:

W,S =ar min — xTw)?
( ) gweRP,Sc[n] Z(yz i)
|S|=nfk €S
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Basic aspects in robust regression

A commonly used data generation model is:
_ T * *
y=X"w+b"+e€
w* : the true regression coefficient we want to recover.
€ : The dense white noise vector subject to a specific distribution.

b* : a k-sparse vector with only &k non 0-values, representing k unbounded
noise in the response vector.
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Based Work

Consistent Robust Regression (CRR) (Bhatia et al. 2017)

Algorithm 1 CRR: Consistent Robust Regression

Input: Covariates X = [Xi, ..., X,], responsesy = [yi,...,yn] ', corruption index k, tolerance e

1: b? < 0,t+ 0,
Py « XT(XXT)"'Xx

2: while [b' —b'~!||, > edo
33 bttt HTI\-(ID)(]Jt + (I — R\')y)
4 441
5: end while

6: return w' « (XX T)"'X(y — b’)

The key step in this CRR algorithm is b < HT}(Pxb’ 4+ (I— Px)y). This step can
be divided into two sub steps:

w — (XXT) "' X(y — b)

bt HT)(y — X w'™)

+1

This means w'™! = argmin,, ||y — b’ — X w||?
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TRIP:Hard Thresholding Approach to Robust Regression

with Simple Prior

w' = argmin [ly — b’ — X wl|*
w

w'— (XXT) "' X(y — b)
b — HT(y — X"w')

TRIP:Hard Thresholding Approach to Robust Regression with Simple Prior (Ours)

w' = argmin |y — b’ — X w||® + (w — wo) " M(w — wo)
w

w'— (XX + M)~ X(y — b + Mwy)
bt HT)(y — X"w")

TRIP can be viewed as using MAP to estimate w by giving w a prior A/(wo, o) and

M= (Xo/0%)~" in Bayesian view.
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TRIP

Algorithm 1 TRIP: hard Thresholding approach to Robust regression with sImple Prior

Input: Covariates X = [X1, ..., X,], responses ¥ = [y1, ..., ¥n]”, prior knowledge wo,
penalty matrix M, corruption index k, tolerance e
Output: solution w
1: bY < 0,t <0,
Pyx XT(XXT + ]\J)_IX, Py XT(XXT + ]L[)_ljvf
: while ||b? — b"~1|; > e do
bttt « HT,(Pyuxbt + (I — Pux)y — Pumwo)
t+—t+1;
: end while
: return W+ (XXT)"1X(y — bt)

Theorem (The convergence of TRIP)

Under the conditions of Theorem 1, and assuming that x; € R® are generated from the
standard normal distribution, if k > k*, it is guaranteed with a probability of at least
1 — 6 that, for any ,6 > 0, the current estimation coefficient wr, satisfies
k+E* Amax (M,
Wz, — W'l < O(2=) (e + eo) + O(LF x|y _ syl after

To = O(log( ”b l2 )) steps.

= = = — TV
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rgence Condition

The Convergence Condition of CRR

The Convergence Condition of TRIP

Ak+k*
2>\min(XXT+]M) < 1

Notice that Amin(XXT + M) > Apmin( XXT) + Amin(M), so TRIP need a weaker
condition for convergence than CRR.

Under the condition lim;,— "”’;(M) = ¢, we can give an approximate expression of the

breakdown point for TRIP when £ is not too large

k" <k <(0.3023 — 1/0.0887 — 0.0040¢)n
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How To Decrease The Bias?

In the convergence theory of TRIP, there is a unavoidable bias in the

estimation:

VEk+ E Amax (M)
n3/2
In TRIP, the estimation of w* in every iteration still uses least-squares
with a penalty term, which is still easily affected by the corrupted points.
This disadvantage forces us to assign a higher weight to the prior to resist
severe data corruption in the case of AAAs. However, a higher weight on
the prior means a larger estimation bias.

o

)W = woll2

If every iteration step is more robust, will the estimation bias decrease?
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BRHT: Robust Bayesian Reweighting Regression via Hard
Thresholding

TRIP:Hard Thresholding Approach to Robust Regression with Simple Prior

w' = argmin |y — b’ — X" w|* + (w — wo) " M(w — wo)
w'— (XXT + M)~ X(y — b" + Mwo)
b HTW(y — X"w')

v

BRHT: Robust Bayesian Reweighting Regression via Hard Thresholding

(w'r') =arg max logpy(w) + log pe(r) + Z rilog £(yi — b} | w,x4,0°)
wERY,reR" ]

b HTy(y — X"w')

The estimation of w is based on Bayesian Reweighting from (Wang et al. 2017), which
is a robust Bayesian model for estimating parameters. r is the weight on each point.

The prior w is also in the form A (wq, Xo).
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BRHT

Algorithm 2 BRHT: robust Bayesian Reweighting regression via Hard Thresholding

Input: Covariates X = [Xy, ..., X,,], responses y = [y1, ..., Yn]T , prior distribution p,(r), pw (W)
, corruption index k, tolerance €
Output: solution w
1: b% <0, <+ 0,
while |[b’ — b'~ ||z > edo
wh VBEM(X’ ) btvpl'(r)7pw(w))
bt « HTi(y — XTwt)
t+—t+1;
end while
return w < (XX7)"'X(y — bt)

P R

Theorem (The convergence of BRHT)

Under the conditions of Theorem 4 and with x; € R? generated from the standard
normal distribution, there exist o > 0 and 0 < v < 1 + €, where € is a small number,
such that if k> k* and ¥ in the prior pw(W) is ac® M™*, it can be guaranteed with a
probability of at least 1 — § that, for any €, > 0, the current estimation coefficient wr,
satisfies |[wr, —w[l2 < O(J=)(e + e0) + Oz )y | w* — wol|z after

To = (log(@)) steps.
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The design of OAA and AAA

OAA: The set of corrupted points S is selected as a uniformly random

k-sized subset of [n], and the corresponding response variables are set as
Yi = x;fw* + b; + €;, where b; are sampled from the uniform distribution
U0, 10] and the white noise €; ~ N (0, 02).

AAA: We use all information from the true data distribution to corrupt
the data, and propose an adaptive data corruption algorithm (ADCA). § is
set to 0.1n for n = 1000, p = 200, and to 0.2n for n = 2000, p = 100.
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Algorithm of AAA attack

Algorithm 4 ADCA: Adaptive Data Corruption Algorithm

Input: Covariates X = [Xy,..., Xy, responses y = [y1, ..., Yn|" . true parameter w*
penalty coefficient d, corruption index k, tolerance €
Output: solution w
1: bY + 0, + 0,
Psx + XT(XXT o)X, P; + XT(XXT —sI)"161
: while |[b? — b*~!||3 > edo
bitl HTk(P,sxbt + (I — ng)y + PJW*)
t«1t+1;
: end while
W (XXT) =1 X(y — b?)
. C «+ supp(b?)
s return yo = XAw

ADCA is similar with TRIP algorithm, but will seriously destroys the data,
which conventional methods can't resist it.
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The recovery effects of TRIP and BRHT
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Our method is more robust than other methods and shows excellent
performance under complex attacks.
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The reliability of TRIP and BRHT under other attack
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Under this new severe attack, our methods still maintain good

performance.
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The stability of TRIP and BRHT
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BRHT is more robust than TRIP under AAAS, and both methods are not

too sensitive to the prior.
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© Satellite Solar Cell Data Reconstruction Algorithm
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The power of solar cells on LEO satellite

The power of solar cell on LEO satellites
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Methods to solve data reconstruction problem
@ Select a period with few corruptions as the prior data.
@ Remove the time deviation of data in each period.

@ Using robust Bayesian regression method to reconstruct the data of
each period.

@ Select representative points in each period to find the overall trend.
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Prior Information

We used the parameters of one standard period as the prior data. The standard period
is obtained by manually removing the outliers.

Fitting method

@ Chebyshev polynomials are used as the basis of linear regression because the
results obtained are relatively stable

The standard period
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Remove Time Deviation

The power of solar cells on LEO satellite

The time deviation in each period will 31
L. . i «_Period with time deviation
cause large deviation in regression " N
coefficient.
5 Fac A
529 Fa
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Further remove minor time deviation
m
pi(t) = po(t+ hy) § v Ti(f) + haph (£) (6)

As for each period, the shape of the data is roughly similar, so we can use p;t(t) to
replace p} (1).

Zm] ) + hipe(t) ©)

Where p;t(t) can be calculated by pst(t) =20 st TZ( t).
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Data reconstruction of each period

So the data reconstruction problem for each period becomes:
m
pi(t) = Z%’j Ti(t) + haply(t) (8)
=0

The reconstruction method adopts TRIP algorithm as its high-speed
calculation. The penalty matrix adopts the following form

0 0 O
M=s|0 I, 0 (9)
0 0 O
Subsequently, the parameters [§', ..., V5L, hy) of the standard period are

used as the prior information, where hg = 0.
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Final Denoising Algorithm

Parameter setting
The degree of Chebyshev polynomial is 9. We define X; = [X}, ..., X}"], where

XI = [To(t), .., Tg(%ij),p;t(Eij)]T is the covariant of the time point ¢;, and the penalty
matrix is set as

0
M=1 0
0

o 5o

0
0 (10)
0

Algorithm 5 Solar cell denoising algorithm

Input: Solar cell data of LEO satellite (t;;, p;;), standard period parameter wg
penalty matrix M, corruption ratio c, tolerance €
Output: cleaned data (¢;;,p;(t:;))
1: while ¢ < nperioq do

2 = (0 t)/na

w; < TRIP(X;,pi,wo, M, k,€)
(tij, Dij) < (tig, X]wi)

9: end while

10: return {(t;;,pi;)}

3: forj=1:n;do
4: tij = t,'j - ti
5.  end for

6: k=an;

7.

8:
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Q Result
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The power of solar cells on LEO satellite
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Our method successfully recovered the original data, which means that the
recovered data can be further used to extract data trend information
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Representative Point Extraction
@ In each period, we use a special point (; + t, pi(t.)) as the
representative of this period, where £, is a determined value in
advance.

The trend of solar cell power

291

I ® Representative point of each periodl
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© Conclusion
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Conclusion

@ We propose two novel robust regression algorithms TRIP and BRHT,

which can tolerate a larger proportion of outliers by incorporating
prior information.

@ Through TRIP algorithm, we propose a satellite solar array denoising
algorithm, and perfectly recover the corrupted data.

@ By extracting representative points from the recovered data, we reveal
the power variation trend of the satellite solar array.
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Thanks for Listening!
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